绘制MNIST二维特征分布

打算实现MNIST在各个loss下训练出来的二维特征分布,持续更新

1.为何绘制出的特征分布只在第一象限

图1

在看center loss论文的时候,自己随便构建了一个网络绘制softmax二维特征,但是绘制出的特征分布一直如上图所示,跟论文当中完全不一样。直到我看到Sphereface论文Appendix A,当中说到之所以会出现这种第一象限分布的特征,是因为embedding层加了relu激活,因为relu:max(0,x)会将负数置0。果不其然,去掉relu后就绘制出了如下所示的特征分布。


图2

2. Modified Softmax

相比softmax,Modified Softmax可以让特征之间明确地按角度区分开。


801.jpg

3. Angular Margin Softmax

可以看到,a-softmax不光把特征由角度区分开来,而且更好地控制了特征间的角度距离。即高内聚,低耦合。


403.jpg

403.jpg
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容