微波射频(四)浅析多通道接收单元噪声系数的测试

姓名:刘烁烁 ;学号:20181213904;学院:广州研究院

原链接:https://zhuanlan.zhihu.com/p/67824396

【嵌牛导读】怎么测试低噪声放大器(LNA)的噪声系数

【嵌牛鼻子】Y因子法,误差

【嵌牛提问】怎么测试低噪声放大器(LNA)的噪声系数呢?误差怎么分析?

【嵌牛正文】

有人要测试低噪声放大器(LNA)的噪声系数,但是可能遇到一些麻烦。LNA噪声系数的测试采用Y因子法非常简便,校准完成后直接连接待测件即可测试,可操作性非常强。麻烦在哪里呢?

原来待测件是一个含有四个通道的接收模块,每个通道只含有一个LNA,然后经过合路器合为一路输出,如图1所示。按理说,逐一测试每一通道的噪声系数还是比较简单的,因为通道中没有变频器件。但是麻烦在于,四路LNA的供电是同一路,如果测试其中一路时,很难做到只给一路而不给其它三路供电。因此,为了方便测试,朋友问能否在四路同时供电的情况下测试每一路的噪声系数。如果这样测试,大体上会带来多大的误差?


      图1. 四通道接收模块(只包含LNA)

四路LNA同时供电的情况下,当然还可以使用Y因子法进行测试,可以得到一个测量结果,但是已不再讲究测试精度。尽管如此,如果要对比只给待测通道供电情况下的测试结果,还是可以通过公式推导一番的。

推导过程比较复杂,为了简便起见,作如下假设:(1) 四个通道具有相同的增益G 和噪声因子 F;(2) 室温为290K( T0 );(3) 合路器通道隔离度良好,及各级器件之间匹配良好。

1. 首先考虑只给待测通道供电的情况,其它三路不供电,且端接50 Ohm匹配负载。不供电的三路也会在合路器输出端贡献一部分噪声,但是相对于待测通道的输出噪声要小很多,所以下面的推导将其忽略。采用Y因子法测试之前需要做噪声系数校准,这是为了得到频谱仪自身的噪声系数,同时校准过程中的中间测量量将用于待测件增益的计算。

校准时,将噪声源直接连接于频谱仪,利用噪声源打开和关断两种状态下的测量值,便可以提取出频谱仪的噪声系数。

当噪声源分别打开和关闭时,频谱仪在带宽B范围内测得的噪声功率为:

式中, Ton 和 Toff 分别为噪声源打开和关闭时的等效噪声温度, FSA和TSA 分别为频谱仪的噪声因子及等效噪声温度, 

 GSA为频谱仪的通道增益——频谱仪通道经过校准,因此可以认为其增益为1

噪声系数校准完成后,连接待测件进行测试,当噪声源分别打开和关闭时,频谱仪在带宽B范围内测得的噪声功率为:

根据校准及测试过程中测得的噪声功率,便可以确定待测件的增益,公式如下:

定义Y因子

在 T0 温度下,由Y因子及噪声源超噪比ENR便可以计算出待测件与频谱仪总体的噪声系数:

下面考虑另外一种情况,四路LNA同时供电,测试结果将是怎样的。

2. 如果四路同时供电,测试结果将会怎么样呢?不测试的三路端接50 Ohm匹配负载,由于在正常状态下,其在合路器输出端贡献的噪声不能再忽略。

噪声系数的校准与前面第一种情况完全相同,此处不再赘述。校准完成后,连接待测件进行测试。当噪声源分别打开和关闭时,频谱仪在带宽B范围内测得的噪声功率为:

在此过程中计算得到的待测件的增益为

经过验证, G1=G .

定义Y因子

在 T0 温度下,由Y因子及噪声源超噪比ENR便可以计算出待测件与频谱仪总体的噪声系数:

3. 对比分析上述两种情况,评估测试结果差异大小。

如果 GF>>FSA,则上式可以简化为

这意味着第二种情况测得的总噪声系数将比第一种情况高约6dB.

总噪声系数是指待测件与频谱仪总体的噪声系数,如果将频谱仪自身的噪声系数修正掉,那么两种情况测得的待测件的噪声系数有多少差异呢?

对于两级级联系统,待测件与频谱仪级联后总体的噪声因子为:

因 

 比 

 高约6dB,故满足如下关系

因 G1=G,上式进一步化简得

上述公式推导基于假设 GF>>FSA,通常LNA的噪声系数在1.5dB~3dB之间,对应的噪声因子为位于1.4~2之间,这意味着如果要满足该假设条件,则要求LNA的增益 G>>FSA 。

这种情况下,可以作如下估计

小结:当测试其中一个通道的噪声系数时,如果其它三个通道不断电,则当待测通道的增益 

 远远大于频谱仪自身噪声系数 

 时,测得的噪声系数结果比单独测试一个通道(其它三个通道断电)的结果高约6dB!

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 230,431评论 6 544
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 99,637评论 3 429
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 178,555评论 0 383
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 63,900评论 1 318
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 72,629评论 6 412
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 55,976评论 1 328
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 43,976评论 3 448
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 43,139评论 0 290
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 49,686评论 1 336
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 41,411评论 3 358
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 43,641评论 1 374
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 39,129评论 5 364
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 44,820评论 3 350
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 35,233评论 0 28
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 36,567评论 1 295
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 52,362评论 3 400
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 48,604评论 2 380

推荐阅读更多精彩内容