无监督的神经网络模型-自编码器

自编码器(简称AE)是一种无监督的神经网络模型,最初的AE是一个三层的前馈神经网络结构,由输入层、隐藏层和输出层构成,其核心的作用是能够学习到输入数据的深层表示。自编码器最初是用来初始化神经网络的权重参数,实践证明,这种通过逐层训练加微调得到的初始化参数要比传统的对称随机初始化参数效果好,更容易收敛,并且在一定程度上缓解了BP算法在深层网络训练中出现的梯度消失问题。

当前自编码器的主要应用有两个方面,一是特征提取;另一个是非线性降维,用于高维数据的可视化。自编码器的核心设计是隐藏层,隐藏层的设计有两种方式分别是:

(1)当隐藏层神经元个数小于输入层神经元个数时,称为undercomplete。该隐藏层设计使得输入层到隐藏层的变换本质上是一种降维的操作,网络试图以更小的维度去描述原始数据而尽量不损失数据信息,从而得到输入层的压缩表示。当隐藏层的激活函数采用线性函数时,自编码器也被称为线性自编码器,其效果等价于主成分分析(PCA)。

(2)当隐藏层的神经元个数大于输入层神经元个数时,称为overcomplete。该隐藏层设计一般用于稀疏编码器,可以获得稀疏的特征表示,也就是隐藏层中有大量的神经元取值为0。

降噪自编码器

降噪自编码器(DAE)其目的是增强自编码器的鲁棒性。自编码器的目标是期望是重构后的结果输出X与输入数据x相同,也就是能够学习到输入层的正确数据分布。但当输入层数据收到噪音的影响时,可能会使获得的输入数据本身就不服从原始的分布。在这种情况下,利用自编码器得到的结果也将是不正确的,为了解决这种由于噪音产生的数据偏差问题,DAE在输入层和隐藏成之间添加了噪音处理,得到新的经过逄处理后的噪音层数据为y,然后按照这个新的噪音数据y进行常规自编码器变换操作。

栈式自编码器

栈式自编码器(SAE),也被称为堆栈自编码器、堆叠自编码器。是将多个自编码器进行叠加,利用上一层的隐藏层表示作为下一层的输入,得到更抽象的表示。SAE的一个很重要应用是通过逐层预训练来初始化网络权重参数,从而提升深层网络的收敛速度和减缓梯度消失的影响。对于常见的监督学习,SAE通过下面两个鸡蛋作用于整个网络。

1.逐层预训练

通过自编码器来训练每一层的参数,作为神经网络的初始化参数,利用逐层预训练的方法,首先构建多个自编码器,每一个自编码器对应于一个隐藏层。

2.微调

经过第一步的逐层预训练后,得到了网络权重参数更加合理的初始化估算,就可以像训练普通的深层网络一样,通过输出层的损失函数,利用梯度下降等方法来迭代求解最优参数

稀疏编码器

稀疏编码器的网络结构和自编码器一样,同样是一个有三层结构构成的前馈神经网络,在稀疏编码中,期望模型能够对任意的输入数据,得到隐藏层,以及输出层,并且输入数据、隐藏层、输出层门组下面两个性质。

(1)隐藏层向量是稀疏的,则向量有尽可能多的零元素

(2)输出层数据能够尽可能还原输入层数据。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容