apply,lapply,sapply,tapply函数的使用

1)apply

apply函数 将数据框或矩阵作为输入, 用于遍历数组中的行或列

apply(x, MARGIN, FUN, ...)

####MARGIN按行计算或按列计算,1表示按行,2表示按列

#####FUN(mean,median.....),也可以使用自定义的函数

a<-as.matrix(1:12,c(3,4))

apply(a,1,function(x) x^2)

b=function(x) {x^2}

apply(a,1,b)

###########一个小测试,添加计算得到的平均值

Student <- c("John Davis", "Angela Williams", "Bullwinkle Moose",

            "David Jones", "Janice Markhammer", "Cheryl Cushing",

            "Reuven Ytzrhak", "Greg Knox", "Joel England",

            "Mary Rayburn")

Math <- c(502, 600, 412, 358, 495, 512, 410, 625, 573, 522)

Science <- c(95, 99, 80, 82, 75, 85, 80, 95, 89, 86)

English <- c(25, 22, 18, 15, 20, 28, 15, 30, 27, 18)

roster <- data.frame(Student, Math, Science, English, stringsAsFactors=FALSE)

z <- roster[,2:4]

score <- apply(z, 1, mean)

for(i in (1:length(score)))

{

  roster$mean[i] = score[i] 

}

#######apply函数与which的结合

pos=which.max(apply(RNAseq_expr,1,mad))

a[which.max(apply(a,1,mad)),]

2)lapply()函数

lapply()函数可用于对列表对象执行操作,并返回与原始集合长度相同的列表对象。lappy()返回一个长度与输入列表对象相似的列表,其每个元素都是将FUN应用于列表的相应元素的结果。lapply()将列表,向量或数据框作为输入,并在列表中给出输出。

我们可以使用unlist()将列表转换为向量。

3)sapply()函数将列表,向量或数据帧作为输入,并以向量或矩阵形式输出。它对列表对象的操作很有用,并返回与原始集合长度相同的列表对象。sapply()函数执行的功能与lapply()函数相同,但返回一个向量。

你可以使用函数sapply()提取列表中每个成分的第一个元素,放入一个储存名字

的向量Firstname,并提取每个成分的第二个元素,放入一个储存姓氏的向量Lastname。"["

是一个可以提取某个对象的一部分的函数,在这里它是用来提取列表name各成分中的第一

个或第二个元素的。Student <- c("John Davis", "Angela Williams", "Bullwinkle Moose",

            "David Jones", "Janice Markhammer", "Cheryl Cushing",

            "Reuven Ytzrhak", "Greg Knox", "Joel England",

            "Mary Rayburn")

name <- strsplit(Student, " ")

Lastname <- sapply(name, "[", 2)   ####sapply函数可提取列表中数据,提取列表的第2个元素

Firstname <- sapply(name, "[", 1)  #####,提取列表的第1个元素

4)tapply()函数

tapply()计算向量中每个因子变量的度量(均值,中位数,最小值,最大值等)或函数。这是一项非常有用的功能,可让您创建向量的子集,然后将某些功能应用于每个子集。

参数:

vector:创建向量

factor:创造因子

fun:要应用的函数

data(iris)

tapply(iris$Sepal.Width, iris$Species, median)

更详细的介绍参考

R语言学习记录:apply、lapply、sapply、mapply、tapply函数_fancykoi的博客-CSDN博客

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,287评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,346评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,277评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,132评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,147评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,106评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,019评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,862评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,301评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,521评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,682评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,405评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,996评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,651评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,803评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,674评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,563评论 2 352

推荐阅读更多精彩内容