Sharding的基本思想其实就是采用分治的思想,要把一个数据库切分成多个部分放到不同的数据库(server)上,从而缓解单一数据库的性能问题。
水平切分&垂直切分
- 水平切分:单表的数据量非常多,这时候适合水平切分,即把表的数据按某种规则(比如按ID散列)切分到多个数据库(server)上
- 垂直切分:表多而数据多,这时候适合使用垂直切分,即把关系紧密(比如同一模块)的表切分出来放在一个server上,根据业务需要去不同的server上请求数据。
当然,现实中更多是这两种情况混杂在一起,这时候需要根据实际情况做出选择,也可能会综合使用垂直与水平切分,从而将原有数据库切分成类似矩阵一样可以无限扩充的数据库(server)阵列。下面分别详细地介绍一下垂直切分和水平切分.
垂直切分
垂直切分的最大特点就是规则简单,实施也更为方便,尤其适合各业务之间的耦合度非常低,相互影响很小,业务逻辑非常清晰的系统。在这种系统中,可以很容易做到将不同业务模块所使用的表分拆到不同的数据库中。根据不同的表来进行拆分,对应用程序的影响也更小,拆分规则也会比较简单清晰。
水平切分
水平切分于垂直切分相比,相对来说稍微复杂一些。因为要将同一个表中的不同数据拆分到不同的数据库中,对于应用程序来说,拆分规则本身就较根据表名来拆分更为复杂,后期的数据维护也会更为复杂一些。
混合切分
让我们从普遍的情况来考虑数据的切分:一方面,一个库的所有表通常不可能由某一张表全部串联起来,这句话暗含的意思是,水平切分几乎都是针对一小搓一小搓(实际上就是垂直切分出来的块)关系紧密的表进行的,而不可能是针对所有表进行的。另一方面,一些负载非常高的系统,即使仅仅只是单个表都无法通过单台数据库主机来承担其负载,这意味着单单是垂直切分也不能完全解决问明。因此多数系统会将垂直切分和水平切分联合使用,先对系统做垂直切分,再针对每一小搓表的情况选择性地做水平切分。从而将整个数据库切分成一个分布式矩阵。
切分策略
如前面所提到的,切分是按先垂直切分再水平切分的步骤进行的。垂直切分的结果正好为水平切分做好了铺垫。垂直切分的思路就是分析表间的聚合关系,把关系紧密的表放在一起。多数情况下可能是同一个模块,或者是同一“聚集”。这里的“聚集”正是领域驱动设计里所说的聚集。在垂直切分出的表聚集内,找出“根元素”(这里的“根元素”就是领域驱动设计里的“聚合根”),按“根元素”进行水平切分,也就是从“根元素”开始,把所有和它直接与间接关联的数据放入一个shard里。这样出现跨shard关联的可能性就非常的小。应用程序就不必打断既有的表间关联。比如:对于社交网站,几乎所有数据最终都会关联到某个用户上,基于用户进行切分就是最好的选择。再比如论坛系统,用户和论坛两个模块应该在垂直切分时被分在了两个shard里,对于论坛模块来说,Forum显然是聚合根,因此按Forum进行水平切分,把Forum里所有的帖子和回帖都随Forum放在一个shard里是很自然的。
对于共享数据数据,如果是只读的字典表,每个shard里维护一份应该是一个不错的选择,这样不必打断关联关系。如果是一般数据间的跨节点的关联,就必须打断。
需要特别说明的是:当同时进行垂直和水平切分时,切分策略会发生一些微妙的变化。比如:在只考虑垂直切分的时候,被划分到一起的表之间可以保持任意的关联关系,因此你可以按“功能模块”划分表格,但是一旦引入水平切分之后,表间关联关系就会受到很大的制约,通常只能允许一个主表(以该表ID进行散列的表)和其多个次表之间保留关联关系,也就是说:当同时进行垂直和水平切分时,在垂直方向上的切分将不再以“功能模块”进行划分,而是需要更加细粒度的垂直切分,而这个粒度与领域驱动设计中的“聚合”概念不谋而合,甚至可以说是完全一致,每个shard的主表正是一个聚合中的聚合根!这样切分下来你会发现数据库分被切分地过于分散了(shard的数量会比较多,但是shard里的表却不多),为了避免管理过多的数据源,充分利用每一个数据库服务器的资源,可以考虑将业务上相近,并且具有相近数据增长速率(主表数据量在同一数量级上)的两个或多个shard放到同一个数据源里,每个shard依然是独立的,它们有各自的主表,并使用各自主表ID进行散列,不同的只是它们的散列取模(即节点数量)必需是一致的。
事务问题
解决事务问题目前有两种可行的方案:
- 使用分布式事务
优点:交由数据库管理,简单有效
缺点:性能代价高,特别是shard越来越多时 - 由应用程序和数据库共同控制
原理:将一个跨多个数据库的分布式事务分拆成多个仅处
于单个数据库上面的小事务,并通过应用程序来总控
各个小事务。
优点:性能上有优势
缺点:需要应用程序在事务控制上做灵活设计。如果使用
了spring的事务管理,改动起来会面临一定的困难。
跨节点Join的问题(两次查、冗余表或字段)
只要是进行切分,跨节点Join的问题是不可避免的。但是良好的设计和切分却可以减少此类情况的发生。解决这一问题的普遍做法是分两次查询实现。在第一次查询的结果集中找出关联数据的id,根据这些id发起第二次请求得到关联数据。
跨节点的count,order by,group by以及聚合函数问题
这些是一类问题,因为它们都需要基于全部数据集合进行计算。多数的代理都不会自动处理合并工作。解决方案:与解决跨节点join问题的类似,分别在各个节点上得到结果后在应用程序端进行合并。和join不同的是每个结点的查询可以并行执行,因此很多时候它的速度要比单一大表快很多。但如果结果集很大,对应用程序内存的消耗是一个问题。
垂直切分的粒度
垂直切分的粒度指的是在做垂直切分时允许几级的关联表放在一个shard里.这个问题对应用程序和sharding实现有着很大的影响。
关联打断地越多,则受影响的join操作越多,应用程序为此做出的妥协就越大,但单表的路由会越简单,与业务的关联性会越小,就越容易使用统一机制处理.在此方向上的极端方案是:打断所有连接,每张表都配有路由规则,可以使用统一机制或框架自动处理.比如amoeba这样的框架,它的路由能且仅能通过SQL的特征(比如某个表的id)进行路由。
反之,若关联打断地越少,则join操作的受到的限制就小,应用程序需要做出的妥协就越小,但是表的路由就会变复杂,与业务的关联性就越大,就越难使用统一机制处理,需要针对每个数据请求单独实现路由。
实际的粒度掌控需要结合“业务紧密程度”和“表格数据量”两个因素综合考虑,一般来说:
若划归到一起的表格关系紧密,且数据量并不大,增速也非常缓慢,则适宜放在一个shard里,不需要再进行水平切分;
若划归到一起的表格数据量巨大且增速迅猛,则势必要在垂直切分的基础上再进行水平切分,水平切分就意味着原单一shard会被细分成多个更小的shard,每一个shard存在一个主表(即会以该表ID进行散列的表)和多个相之相关的关联表。
总之,垂直切分的粒度在两个相反的方向上呈现优势与劣势并存并相互博弈的局面.架构师需要做的是结合项目的实际情况在两者之间取得收益最大化的平衡。
拆分实施示例
拆分策略
对数据库进行分库分表(Sharding化)前,需要开发人员充分了解系统业务逻辑和数据库schema.一个好的建议是绘制一张数据库ER图或领域模型图,以这类图为基础划分shard,直观易行,可以确保开发人员始终保持清醒思路。对于是选择数据库ER图还是领域模型图要根据项目自身情况进行选择。如果项目使用数据驱动的开发方式,团队以数据库ER图作为业务交流的基础,则自然会选择数据库ER图,如果项目使用的是领域驱动的开发方式,并通过OR-Mapping构建了一个良好的领域模型,那么领域模型图无疑是最好的选择。就我个人来说,更加倾向使用领域模型图,因为进行切分时更多的是以业务为依据进行分析判断,领域模型无疑更加清晰和直观。
垂直切分
垂直切分的依据原则是:将业务紧密,表间关联密切的表划分在一起,例如同一模块的表。结合已经准备好的数据库ER图或领域模型图,仿照活动图中的泳道概念,一个泳道代表一个shard,把所有表格划分到不同的泳道中。下面的分析示例会展示这种做法。当然,你也可以在打印出的ER图或模型图上直接用铅笔圈,一切取决于你自己的喜好。
水平切分
垂直切分后,需要对shard内表格的数据量和增速进一步分析,以确定是否需要进行水平切分。
若划分到一起的表格数据增长缓慢,在产品上线后可遇见的足够长的时期内均可以由单一数据库承载,则不需要进行水平切分,所有表格驻留同一shard,所有表间关联关系会得到最大限度的保留,同时保证了书写SQL的自由度,不易受join、group by、order by等子句限制。
-
若划分到一起的表格数据量巨大,增速迅猛,需要进一步进行水平分割。进一步的水平分割就这样进行:
- 结合业务逻辑和表间关系,将当前shard划分成多个更小的shard,通常情况下,这些更小的shard每一个都只包含一个主表(将以该表ID进行散列的表)和多个与其关联或间接关联的次表。这种一个shard一张主表多张次表的状况是水平切分的必然结果。这样切分下来,shard数量就会迅速增多。如果每一个shard代表一个独立的数据库,那么管理和维护数据库将会非常麻烦,而且这些小shard往往只有两三张表,为此而建立一个新库,利用率并不高,因此,在水平切分完成后可再进行一次“反向的Merge”,即:将业务上相近,并且具有相近数据增长速率(主表数据量在同一数量级上)的两个或多个shard放到同一个数据库上,在逻辑上它们依然是独立的shard,有各自的主表,并依据各自主表的ID进行散列,不同的只是它们的散列取模(即节点数量)必需是一致的。这样,每个数据库结点上的表格数量就相对平均了。
- 所有表格均划分到合适的shard之后,所有跨越shard的表间关联都必须打断,在书写sql时,跨shard的join、group by、order by都将被禁止,需要在应用程序层面协调解决这些问题。
实施阶段
如果项目在开发伊始就决定进行分库分表,则严格按照分析设计方案推进即可。如果是在中期架构演进中实施,除搭建实现sharding逻辑的基础设施外(关于该话题会在下篇文章中进行阐述),还需要对原有SQL逐一过滤分析,修改那些因为sharding而受到影响的sql。
jpetstore来演示如何进行分库分表(sharding)在分析阶段的工作。由于一些个人原因,演示使用的jpetstore来自原ibatis官方的一个Demo版本,SVN地址为:http://mybatis.googlecode.com/svn/tags/java_release_2.3.4-726/jpetstore-5。关于jpetstore的业务逻辑这里不再介绍,这是一个非常简单的电商系统原型,其领域模型如下图:
由于系统较简单,我们很容易从模型上看出,其主要由三个模块组成:用户,产品和订单。那么垂直切分的方案也就出来了。接下来看水平切分,如果我们从一个实际的宠物店出发考虑,可能出现数据激增的单表应该是Account和Order,因此这两张表需要进行水平切分。对于Product模块来说,如果是一个实际的系统,Product和Item的数量都不会很大,因此只做垂直切分就足够了,也就是(Product,Category,Item,Iventory,Supplier)五张表在一个数据库结点上(没有水平切分,不会存在两个以上的数据库结点)。但是作为一个演示,我们假设产品模块也有大量的数据需要我们做水平切分,那么分析来看,这个模块要拆分出两个shard:一个是(Product(主),Category),另一个是(Item(主),Iventory,Supplier),同时,我们认为:这两个shard在数据增速上应该是相近的,且在业务上也很紧密,那么我们可以把这两个shard放在同一个数据库节点上,Item和Product数据在散列时取一样的模。根据前文介绍的图纸绘制方法,我们得到下面这张sharding示意图:
对于这张图再说明几点:
- 使用泳道表示物理shard(一个数据库结点)
- 若垂直切分出的shard进行了进一步的水平切分,但公用一个物理shard的话,则用虚线框住,表示其在逻辑上是一个独立的shard。
- 深色实体表示主表
- X表示需要打断的表间关联
全局主键生成策略
一些常见的主键生成策略
- UUID:使用UUID作主键是最简单的方案,但是缺点也是非常明显的。由于UUID非常的长,除占用大量存储空间外,最主要的问题是在索引上,在建立索引和基于索引进行查询时都存在性能问题。
- 结合数据库维护一个Sequence表:此方案的思路也很简单,在数据库中建立一个Sequence表,表的结构类似于:
CREATE TABLE `SEQUENCE` (
`tablename` varchar(30) NOT NULL,
`nextid` bigint(20) NOT NULL,
PRIMARY KEY (`tablename`)
) ENGINE=InnoDB
每当需要为某个表的新纪录生成ID时就从Sequence表中取出对应表的nextid,并将nextid的值加1后更新到数据库中以备下次使用。此方案也较简单,但缺点同样明显:由于所有插入任何都需要访问该表,该表很容易成为系统性能瓶颈,同时它也存在单点问题,一旦该表数据库失效,整个应用程序将无法工作。有人提出使用Master-Slave进行主从同步,但这也只能解决单点问题,并不能解决读写比为1:1的访问压力问题。
除此之外,还有一些方案,像对每个数据库结点分区段划分ID,以及网上的一些ID生成算法,因为缺少可操作性和实践检验,本文并不推荐。实际上,接下来,我们要介绍的是Fickr使用的一种主键生成方案,这个方案是目前我所知道的最优秀的一个方案,并且经受了实践的检验,可以为大多数应用系统所借鉴。
一种极为优秀的主键生成策略
flickr开发团队在2010年撰文介绍了flickr使用的一种主键生成测策略,同时表示该方案在flickr上的实际运行效果也非常令人满意,原文连接:
Ticket Servers: Distributed Unique Primary Keys on the Cheap
这个方案是我目前知道的最好的方案,它与一般Sequence表方案有些类似,但却很好地解决了性能瓶颈和单点问题,是一种非常可靠而高效的全局主键生成方案。
flickr这一方案的整体思想是:建立两台以上的数据库ID生成服务器,每个服务器都有一张记录各表当前ID的Sequence表,但是Sequence中ID增长的步长是服务器的数量,起始值依次错开,这样相当于把ID的生成散列到了每个服务器节点上。例如:如果我们设置两台数据库ID生成服务器,那么就让一台的Sequence表的ID起始值为1,每次增长步长为2,另一台的Sequence表的ID起始值为2,每次增长步长也为2,那么结果就是奇数的ID都将从第一台服务器上生成,偶数的ID都从第二台服务器上生成,这样就将生成ID的压力均匀分散到两台服务器上,同时配合应用程序的控制,当一个服务器失效后,系统能自动切换到另一个服务器上获取ID,从而保证了系统的容错。
关于这个方案,有几点细节这里再说明一下:
- flickr的数据库ID生成服务器是专用服务器,服务器上只有一个数据库,数据库中表都是用于生成Sequence的,这也是因为auto-increment-offset和auto-increment-increment这两个数据库变量是数据库实例级别的变量。
- flickr的方案中表格中的stub字段只是一个char(1) NOT NULL存根字段,并非表名,因此,一般来说,一个Sequence表只有一条纪录,可以同时为多张表生成ID,如果需要表的ID是有连续的,需要为该表单独建立Sequence表。
- 方案使用了mysql的LAST_INSERT_ID()函数,这也决定了Sequence表只能有一条记录。
- 使用REPLACE INTO插入数据,这是很讨巧的作法,主要是希望利用mysql自身的机制生成ID,不仅是因为这样简单,更是因为我们需要ID按照我们设定的方式(初值和步长)来生成。
- SELECT LAST_INSERT_ID()必须要于REPLACE INTO语句在同一个数据库连接下才能得到刚刚插入的新ID,否则返回的值总是0
- 该方案中Sequence表使用的是MyISAM引擎,以获取更高的性能,注意:MyISAM引擎使用的是表级别的锁,MyISAM对表的读写是串行的,因此不必担心在并发时两次读取会得到同一个ID(另外,应该程序也不需要同步,每个请求的线程都会得到一个新的connection,不存在需要同步的共享资源)。经过实际对比测试,使用一样的Sequence表进行ID生成,MyISAM引擎要比InnoDB表现高出很多!
- 可使用纯JDBC实现对Sequence表的操作,以便获得更高的效率,实验表明,即使只使用Spring JDBC性能也不及纯JDBC来得快!
实现该方案,应用程序同样需要做一些处理,主要是两方面的工作:
- 自动均衡数据库ID生成服务器的访问
- 确保在某个数据库ID生成服务器失效的情况下,能将请求转发到其他服务器上执行。
Sharding实现层次
当团队对系统业务和数据库进行了细致的梳理,确定了切分方案后,接下来的问题就是如何去实现切分方案了,目前在sharding方面有不少的开源框架和产品可供参考,同时很多团队也会选择自主开发实现,而不管是选择框架还是自主开发,都会面临一个在哪一层上实现sharding逻辑的问题,本文会对这一系列的问题逐一进行分析和考量。
sharding逻辑的实现层面
从一个系统的程序架构层面来看,sharding逻辑可以在DAO层、JDBC API层、介于DAO与JDBC之间的Spring数据访问封装层(各种spring的template)以及介于应用服务器与数据库之间的sharding代理服务器四个层面上实现。
在DAO层实现
当团队决定自行实现sharding的时候,DAO层可能是嵌入sharding逻辑的首选位置,因为在这个层面上,每一个DAO的方法都明确地知道需要访问的数据表以及查询参数,借助这些信息可以直接定位到目标shard上,而不必像框架那样需要对SQL进行解析然后再依据配置的规则进行路由。另一个优势是不会受ORM框架的制约。由于现在的大多数应用在数据访问层上会依赖某种ORM框架,而多数的shrading框架往往无法支持或只能支持一种orm框架,这使得在选择和应用框架时受到了很大的制约,而自行实现sharding完全没有这方面的问题,甚至不同的shard使用不同的orm框架都可以在一起协调工作。比如现在的java应用大多使用hibernate,但是当下还没有非常令人满意的基于hibernate的sharding框架,(关于hibernate hards会在下文介绍),因此很多团队会选择自行实现sharding。
简单总结一下,在DAO层自行实现sharding的优势在于:不受ORM框架的制约、实现起来较为简单、易于根据系统特点进行灵活的定制、无需SQL解析和路由规则匹配,性能上表现会稍好一些;劣势在于:有一定的技术门槛,工作量比依靠框架实现要大(反过来看,框架会有学习成本)、不通用,只能在特定系统里工作。当然,在DAO层同样可以通过XML配置或是注解将sharding逻辑抽离到“外部”,形成一套通用的框架. 不过目前还没有出现此类的框架。在ORM框架层实现
在ORM框架层实现sharding有两个方向,一个是在实现O-R Mapping的前提下同时提供sharding支持,从而定位为一种分布式的数据访问框架,这一类类型的框架代表就是guzz另一个方向是通过对既有ORM框架进行修改增强来加入sharding机制。此类型的代表产品hibernate shard. 应该说以hibernate这样主流的地位,行业对于一款面向hibernate的sharding框架的需求是非常迫切的,但是就目前的hibernate shards来看,表现还算不上令人满意,主要是它对使用hibernate的限制过多,比如它对HQL的支持就非常有限。在mybatis方面,目前还没有成熟的相关框架产生。有人提出利用mybatis的插件机制实现sharding,但是遗憾的是,mybatis的插件机制控制不到多数据源的连接层面,另一方面,离开插件层又失去了对sql进行集中解析和路由的机会,因此在mybatis框架上,目前还没有可供借鉴的框架,团队可能要在DAO层或Spring模板类上下功夫了。在JDBC API层实现
JDBC API层是很多人都会想到的一个实现sharding的绝佳场所,如果我们能提供一个实现了sharding逻辑的JDBC API实现,那么sharding对于整个应用程序来说就是完全透明的,而这样的实现可以直接作为通用的sharding产品了。但是这种方案的技术门槛和工作量显然不是一般团队能做得来的,因此基本上没有团队会在这一层面上实现sharding,甚至也没有此类的开源产品。在介于DAO与JDBC之间的Spring数据访问封装层实现
在springd大行其道的今天,几乎没有哪个java平台上构建的应用不使用spring,在DAO与JDBC之间,spring提供了各种template来管理资源的创建与释放以及与事务的同步,大多数基于spring的应用都会使用template类做为数据访问的入口,这给了我们另一个嵌入sharding逻辑的机会,就是通过提供一个嵌入了sharding逻辑的template类来完成sharding工作.这一方案在效果上与基于JDBC API实现的方案基本一致,同样是对上层代码透明,在进行sharding改造时可以平滑地过度,但它的实现却比基于JDBC API的方式简单,因此成为了不少框架的选择。在应用服务器与数据库之间通过代理实现
在应用服务器与数据库之间加入一个代理,应用程序向数据发出的数据请求会先通过代理,代理会根据配置的路由规则,对SQL进行解析后路由到目标shard,因为这种方案对应用程序完全透明,通用性好,所以成为了很多sharding产品的选择。在这方面较为知名的产品是mysql官方的代理工具:Mysql Proxy和一款国人开发的产品:
amoeba。mysql proxy本身并没有实现任何sharding逻辑,它只是作为一种面向mysql数据库的代理,给开发人员提供了一个嵌入sharding逻辑的场所,它使用lua作为编程语言,这对很多团队来说是需要考虑的一个问题。amoeba则是专门实现读写分离与sharding的代理产品,它使用非常简单,不使用任何编程语言,只需要通过xml进行配置。不过amoeba不支持事务(从应用程序发出的包含事务信息的请求到达amoeba时,事务信息会被抹去,因此,即使是单点数据访问也不会有事务存在)一直是个硬伤。当然,这要看产品的定位和设计理念,我们只能说对于那些对事务要求非常高的系统,amoeba是不适合的。
多数据源的事务处理
系统经sharding改造之后,原来单一的数据库会演变成多个数据库,如何确保多数据源同时操作的原子性和一致性是不得不考虑的一个问题。总体上看,目前对于一个分布式系统的事务处理有三种方式:分布式事务、基于Best Efforts 1PC模式的事务以及事务补偿机制。
分布式事务
- 优势:
- 基于两阶段提交,最大限度地保证了跨数据库操作的“原子性”,是分布式系统下最严格的事务实现方式。
- 实现简单,工作量小。由于多数应用服务器以及一些独立的分布式事务协调器做了大量的封装工作,使得项目中引入分布式事务的难度和工作量基本上可以忽略不计。
- 劣势:
系统“水平”伸缩的死敌。基于两阶段提交的分布式事务在提交事务时需要在多个节点之间进行协调,最大限度地推后了提交事务的时间点,客观上延长了事务的执行时间,这会导致事务在访问共享资源时发生冲突和死锁的概率增高,随着数据库节点的增多,这种趋势会越来越严重,从而成为系统在数据库层面上水平伸缩的"枷锁", 这是很多Sharding系统不采用分布式事务的主要原因。
基于Best Efforts 1PC模式的事务
与分布式事务采用的两阶段提交不同,Best Efforts 1PC模式采用的是一阶段端提交,牺牲了事务在某些特殊情况(当机、网络中断等)下的安全性,却获得了良好的性能,特别是消除了对水平伸缩的桎酷。Distributed transactions in Spring, with and without XA一文对Best Efforts 1PC模式进行了详细的说明,该文提供的Demo代码更是直接给出了在Spring环境下实现一阶段提交的多数据源事务管理示例。
事务补偿机制
对于那些对性能要求很高,但对一致性要求并不高的系统,往往并不苛求系统的实时一致性,只要在一个允许的时间周期内达到最终一致性即可,这使得事务补偿机制成为一种可行的方案。事务补偿机制最初被提出是在“长事务”的处理中,但是对于分布式系统确保一致性也有很好的参考意义。笼统地讲,与事务在执行中发生错误后立即回滚的方式不同,事务补偿是一种事后检查并补救的措施,它只期望在一个容许时间周期内得到最终一致的结果就可以了。事务补偿的实现与系统业务紧密相关,并没有一种标准的处理方式。一些常见的实现方式有:对数据进行对帐检查;基于日志进行比对;定期同标准数据来源进行同步,等等。
Sharding扩容方案
Sharding就是将原来单一数据库按照一定的规则进行切分,把数据分散到多台物理机(我们称之为Shard)上存储,从而突破单机限制,使系统能以Scale-Out的方式应对不断上涨的海量数据,但是这种切分对上层应用来说是透明的,多个物理上分布的数据库在逻辑上依然是一个库。实现Sharding需要解决一系列关键的技术问题,这些问题主要包括:切分策略、节点路由、全局主键生成、跨节点排序/分组/表关联、多数据源事务处理和数据库扩容等。
任何Sharding系统,在上线运行一段时间后,数据就会积累到当前节点规模所能承载的上限,此时就需要对数据库进行扩容了,也就是增加新的物理结点来分摊数据。如果系统使用的是基于ID进行散列的路由方式,那么团队需要根据新的节点规模重新计算所有数据应处的目标Shard,并将其迁移过去,这对团队来说无疑是一个巨大的维护负担;而如果系统是按增量区间进行路由(如每1千万条数据或是每一个月的数据存放在一个节点上 ),虽然可以避免数据的迁移,却有可能带来“热点”问题,也就是近期系统的读写都集中在最新创建的节点上(很多系统都有此类特点:新生数据的读写频率明显高于旧有数据),从而影响了系统性能。面对这种两难的处境,Sharding扩容显得异常困难。
一般来说,“理想”的扩容方案应该努力满足以下几个要求:
- 最好不迁移数据 (无论如何,数据迁移都是一个让团队压力山大的问题)
- 允许根据硬件资源自由规划扩容规模和节点存储负载
- 能均匀的分布数据读写,避免“热点”问题
- 保证对已经达到存储上限的节点不再写入数据
目前,能够避免数据迁移的优秀方案并不多,相对可行的有两种,一种是维护一张记录数据ID和目标Shard对应关系的映射表,写入时,数据都写入新扩容的Shard,同时将ID和目标节点写入映射表,读取时,先查映射表,找到目标Shard后再执行查询。该方案简单有效,但是读写数据都需要访问两次数据库,且映射表本身也极易成为性能瓶颈。为此系统不得不引入分布式缓存来缓存映射表数据,但是这样也无法避免在写入时访问两次数据库,同时大量映射数据对缓存资源的消耗以及专门为此而引入分布式缓存的代价都是需要权衡的问题。另一种方案来自淘宝综合业务平台团队,它利用对2的倍数取余具有向前兼容的特性(如对4取余得1的数对2取余也是1)来分配数据,避免了行级别的数据迁移,但是依然需要进行表级别的迁移,同时对扩容规模和分表数量都有限制。总得来说,这些方案都不是十分的理想,多多少少都存在一些缺点,这也从一个侧面反映出了Sharding扩容的难度。
一种理想的Sharding扩容方案
先hash取模水平划分到不同的shard,再在shard中采用范围划分到不同的区域范围表
阶段一:初始上线
假设某系统初始上线,规划为某表提供4000W条记录的存储能力,若单表存储上限为1000W条,单库存储上限为2000W条,共需2个Shard,每个Shard包含两个分段表,ShardGroup增量区间为0-4000W,按2取余分散到2个Shard上,具体规划方案如下:
与之相适应,Sharding拓扑结构的元数据如下:
阶段二:系统扩容
经过一段时间的运行,当原表总数据逼近4000W条上限时,系统就需要扩容了。为了演示方案的灵活性,我们假设现在有三台服务器Shard2、Shard3、Shard4,其性能和存储能力表现依次为Shard2<Shard3<Shard4,我们安排Shard2储存1000W条记录,Shard3储存2000W条记录,Shard4储存3000W条记录,这样,该表的总存储能力将由扩容前的4000W条提升到10000W条,以下是详细的规划方案:
元数据表结构:
一种更帅气的简单实用的扩容方案:
再次看一眼扩容前的架构,分两个库,假设每个库1亿数据量,如何平滑扩容,增加实例数,降低单库数据量呢?三个简单步骤搞定。
-
修改配置
主要修改两处:
a)数据库实例所在的机器做双虚ip,原来%2=0的库是虚ip0,现在增加一个虚ip00,%2=1的另一个库同理
b)修改服务的配置(不管是在配置文件里,还是在配置中心),将2个库的数据库配置,改为4个库的数据库配置,修改的时候要注意旧库与辛苦的映射关系:
%2=0的库,会变为%4=0与%4=2;
%2=1的部分,会变为%4=1与%4=3;
这样修改是为了保证,拆分后依然能够路由到正确的数据。 -
reload配置,实例扩容
服务层reload配置,reload可能是这么几种方式:
a)比较原始的,重启服务,读新的配置文件
b)高级一点的,配置中心给服务发信号,重读配置文件,重新初始化数据库连接池
不管哪种方式,reload之后,数据库的实例扩容就完成了,原来是2个数据库实例提供服务,现在变为4个数据库实例提供服务,这个过程一般可以在秒级完成。
整个过程可以逐步重启,对服务的正确性和可用性完全没有影响:
a)即使%2寻库和%4寻库同时存在,也不影响数据的正确性,因为此时仍然是双主数据同步的
b)服务reload之前是不对外提供服务的,冗余的服务能够保证高可用
完成了实例的扩展,会发现每个数据库的数据量依然没有下降,所以第三个步骤还要做一些收尾工作。
-
收尾工作,数据收缩
有这些一些收尾工作:
a)把双虚ip修改回单虚ip
b)解除旧的双主同步,让成对库的数据不再同步增加
c)增加新的双主同步,保证高可用
d)删除掉冗余数据,例如:ip0里%4=2的数据全部干掉,只为%4=0的数据提供服务啦
这样下来,每个库的数据量就降为原来的一半,数据收缩完成。
-
总结
该帅气方案能够实现n库扩2n库的秒级、平滑扩容,增加数据库服务能力,降低单库一半的数据量,其核心原理是:成倍扩容,避免数据迁移。
Ref:
http://blog.csdn.net/bluishglc/article/details/6161475
http://blog.csdn.net/bluishglc/article/details/7696085
http://blog.csdn.net/bluishglc/article/details/7970268
http://mp.weixin.qq.com/s/BLOneOs-cPxP_9b5eH8oQA