数据规范化的几种方法

在数据分析之前,我们都需要让数据满足一定的规律,达到规范性的要求,便于进行挖掘。

如果不进行变换的话,要不就是维数过多增加了计算成本,要不就是数据过于集中,很难找到数据之间的特征。

在数据变换中,重点是如何将数值进行规范化,有三种常用的规范方法,分别是Min-Max规范化、Z-Score规范化、小数定标规范化。

1.Min-max规范化:

将原始数据投射到指定的空间[min,max]。可用公式表示为:

新数值 = (原数值-极小值)/ (极大值 - 极小值) 。

SciKit-Learn中的MinMaxScaler可以完成这个功能。

2.Z-Score规范化:

将原始数据转换为正态分布的形式,使结果易于比较。可用公式表示为:

新数值 = (原数值 - 均值)/ 标准差

在SciKit-Learn中的preprocessing.scale()可以直接将给定数据进行Z-Score规范化。

3.小数定标规范化:

通过移动小数点的位置来进行规范化。小数点移动的位数取决于该属性数据取值的最大绝对值。

例如:属性A的取值范围是-800到70,那么就可以将数据的小数点整体向左移三位即[-0.8,0.07]

利用numpy对数据进行小数定标规范化的方法如下:

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,125评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,293评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,054评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,077评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,096评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,062评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,988评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,817评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,266评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,486评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,646评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,375评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,974评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,621评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,642评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,538评论 2 352

推荐阅读更多精彩内容

  • 人生中最美的珍藏,正是那些往日时光。 那些格外珍贵却又失去了的,谁都想要拾回来,回来的又变了质。
    LOVEABIGALEYUE阅读 324评论 0 0
  • 诗|孙牧之 狗啊狗,你为什么在狂叫 你知不知道, 这样会有人投来石头 会对你怒骂、对你狂啸 因为你打扰了别人的睡觉...
    絳三阅读 193评论 1 3
  • 玉楼春·尊前拟把归期说 宋·欧阳修 尊前拟把归期说。未语春容先惨咽。人生自是有情痴,此恨不关风与月。 离歌且莫翻新...
    姜姀赟阅读 246评论 0 5
  • 一周又过完了回顾这一周,检视一下自己这周完成情况: 1.早睡早起依然坚持很好。 2.运动这周没有完成,每周三次每次...
    刘艳888阅读 177评论 1 2