一、概述
HashMap是我们在编程中遇到极其频繁、非常重要的一个集合类,如果能对HashMap做进一步的性能优化是非常有价值的而JDK 1.8做到了,所以非常有必要学习HashMap的重点源码,了解大师的手法。
二、底层数据结构
画图真的是个累活,好的画图工具很重要啊,上面这两张图分别画出了JDK 1.7、1.8底层数据结构,在JDK 1.7、1.8中都使用
了散列算法,但是在JDK 1.8中引入了红黑树,在链表的长度大于等于8并且hash桶的长度大于等于64的时候,会将链表进行树化。这里的树使用的数据结构是红黑树,红黑树是一个自平衡的二叉查找树,查找效率会从链表的o(n)降低为o(logn),效率是非常大的提高。
那为什么不将链表全部换成二叉树呢?这里主要有两个方面。
第一个是链表的结构比红黑树简单,构造红黑树要比构造链表复杂,所以在链表的节点不多的情况下,从整体的性能看来,
数组+链表+红黑树的结构不一定比数组+链表的结构性能高。第二个是HashMap频繁的resize(扩容),扩容的时候需要重新计算节点的索引位置,也就是会将红黑树进行拆分和重组其实
这是很复杂的,这里涉及到红黑树的着色和旋转,有兴趣的可以看看红黑树的原理,这又是一个比链表结构耗时的操作,所以为链表树化设置一个阀值是非常有必要的。
三、源码分析
3.1 类结构
-
下图是HashMap的类结构,大家看看有个概念
3.2 类注释
我建议大家在读源码时可以先看看类注释,往往类注释会给我们一些重要的信息,这里LZ给大家总结一下。
(1)允许NULL值,NULL键
(2)不要轻易改变负载因子,负载因子过高会导致链表过长,查找键值对时间复杂度就会增高,负载因子过低会导致hash桶的 数量过多,空间复杂度会增高
(3)Hash表每次会扩容长度为以前的2倍
(4)HashMap是多线程不安全的,我在JDK1.7进行多线程put操作,之后遍历,直接死循环,CPU飙到100%,在JDK 1.8中进行多线程操作会出现节点和value值丢失,为什么JDK1.7与JDK1.8多线程操作会出现很大不同,是因为JDK 1.8的作者对resize方法进行了优化不会产生链表闭环。这也是本章的重点之一,具体的细节大家可以去查阅资料。这里我就不解释太多了
(5)尽量设置HashMap的初始容量,尤其在数据量大的时候,防止多次resize
3.3 类常量
//默认hash桶初始长度16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
//hash表最大容量2的30次幂
static final int MAXIMUM_CAPACITY = 1 << 30;
//默认负载因子 0.75
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//链表的数量大于等于8个并且桶的数量大于等于64时链表树化
static final int TREEIFY_THRESHOLD = 8;
//hash表某个节点链表的数量小于等于6时树拆分
static final int UNTREEIFY_THRESHOLD = 6;
//树化时最小桶的数量
static final int MIN_TREEIFY_CAPACITY = 64;
3.4 实例变量
//hash桶
transient Node<K,V>[] table;
//键值对的数量
transient int size;
//HashMap结构修改的次数
transient int modCount;
//扩容的阀值,当键值对的数量超过这个阀值会产生扩容
int threshold;
//负载因子
final float loadFactor;
3.5 构造函数
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
this.loadFactor = loadFactor;
//下面介绍一下这行代码的作用
this.threshold = tableSizeFor(initialCapacity);
}
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}
HashMap有4个构造函数。
hash桶没有在构造函数中初始化,而是在第一次存储键值对的时候进行初始化。 这里重点看下
tableSizeFor(initialCapacity)方法,这个方法的作用是,将你传入的initialCapacity做计算,返回一个大于等于initialCapacity
最小的2的幂次方。
所以这个操作保证无论你传入的初始化Hash桶长度参数是多少,最后hash表初始化的长度都是2的幂次方。比如你输入的是6,计算出来结果就是8。
下面贴出源码。
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
3.6 插入
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//当table为空时,这里初始化table,不是通过构造函数初始化,而是在插入时通过扩容初始化,有效防止了初始化HashMap没有数据插入造成空间浪费可能造成内存泄露的情况
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//存放新键值对
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
//旧键值对的覆盖
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//在红黑树中查找旧键值对更新
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
//将新键值对放在链表的最后
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
//当链表的长度大于等于树化阀值,并且hash桶的长度大于等于MIN_TREEIFY_CAPACITY,链表转化为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
//链表中包含键值对
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//map中含有旧key,返回旧值
if (e != null) {
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
//map调整次数加1
++modCount;
//键值对的数量达到阈值需要扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
HashMap插入跟我们平时使用时的感觉差不多,下面总结一下。
(1)插入的键值对是新键值对,如果hash表没有初始化会进行初始化,否则将键值对插入链表尾部,可能需要链表树化和
扩容
(2)插入的键值对中的key已经存在,更新键值对在put的方法里我们注意看下hash(key)方法,这是计算键值对hash值的方法,下面给出源码
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
hashCode()是一个int类型的本地方法,也就将key的hashCode无符号右移16位然后与hashCode异或从而得到hash值在putVal方法中(n - 1)& hash计算得到桶的索引位置 ,那么现在有两个疑问,为什么要计算hash值?为什么不用 hash % n?
为什么要计算hash值,而不用hashCode,用为通常n是很小的,而hashCode是32位,如果(n - 1)& hashCode那么当n大于2的16次方加1,也就是65537后(n - 1)的高位数据才能与hashCode的高位数据相与,当n很小是只能使用上hashCode低
16位的数据,这会产生一个问题,既键值对在hash桶中分布不均匀,导致链表过长,而把hashCode>>>16无符号右移16位让
高16位间接的与(n - 1)参加计算,从而让键值对分布均匀。降低hash碰撞。为什么使用(n - 1)& hash 而不使用hash% n呢?其实这两种结果是等价的,但是&的效率比%高,原因因为&运算是二
进制直接运算,而计算机天生就认得二进制。下面画图说明一下
上图 hash&(n - 1)的结果是2,而其实hash%n 的结果也是2, hash&(n - 1)与hash%n的结果是等价的。
3.7 扩容
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
//如果旧hash桶不为空
if (oldCap > 0) {
//超过hash桶的最大长度,将阀值设为最大值
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
//新的hash桶的长度2被扩容没有超过最大长度,将新容量阀值扩容为以前的2倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
//如果hash表阈值已经初始化过
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
//如果旧hash桶,并且hash桶容量阈值没有初始化,那么需要初始化新的hash桶的容量和新容量阀值
else {
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
//新的局部变量阀值赋值
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
//为当前容量阀值赋值
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
//初始化hash桶
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
//如果旧的hash桶不为空,需要将旧的hash表里的键值对重新映射到新的hash桶中
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
//只有一个节点,通过索引位置直接映射
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
//如果是红黑树,需要进行树拆分然后映射
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else {
//如果是多个节点的链表,将原链表拆分为两个链表,两个链表的索引位置,一个为原索引,一个为原索引加上旧Hash桶长度的偏移量
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
//链表1
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
//链表2
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
//链表1存于原索引
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
//链表2存于原索引加上原hash桶长度的偏移量
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
那么什么时候回产生扩容呢?
(1)初始化HashMap时,第一次进行put操作
(2)当键值对的个数大于threshold阀值时产生扩容,threshold=size*loadFactor
上面就是HashMap扩容的源代码,我已经加上了注释,相信大家都能看懂了。总结一下,HaspMap扩容就是就是先计算
新的hash表容量和新的容量阀值,然后初始化一个新的hash表,将旧的键值对重新映射在新的hash表里。这里实现的细节当然
没有我说的那么简单,如果在旧的hash表里涉及到红黑树,那么在映射到新的hash表中还涉及到红黑树的拆分。
在扩容的源代码中作者有一个使用很巧妙的地方,是键值对分布更均匀,不知道读者是否有看出来。在遍历原hash桶时的
一个链表时,因为扩容后长度为原hash表的2倍,假设把扩容后的hash表分为两半,分为低位和高位,如果能把原链表的键值对,
一半放在低位,一半放在高位,这样的索引效率是最高的。那看看源码里是怎样写的。大师通过e.hash & oldCap == 0来判断,
这和e.hash & (oldCap - 1) 有什么区别呢。下面我通过画图来解释一下。
因为n是2的整次幂,二进制表示除了最高位为1外,其他低位全为0,那么e.hash & oldCap 是否等于0,取决于n对应最高位
相对于e.hash那一位是0还是1,比如说n = 16,二进制为10000,第5位为1,e.hash & oldCap 是否等于0就取决于e.hash第5
位是0还是1,这就相当于有50%的概率放在新hash表低位,50%的概率放在新hash表高位。大家应该明白了e.hash & oldCap
== 0的好处与作用了吧。
其实,到这里基本上HashMap的核心内容都讲完了,相信大家对HashMap的源码有一定了解了。在源码中还有键值对的查询和删除都比较简单,这里就不在过多赘述了,对于红黑树的构造、旋转、着色,我觉得大家有兴趣可以了解一下,毕竟我们不
是HashMap的开发者,不用了解过多的细节,钻墙角。知道大致的原理即可。
3.8 清除
本来到这里就要结束了,但是LZ还是想跟大家聊一下HashMap总的clear()方法,下面贴出源码。
public void clear() {
Node<K,V>[] tab;
modCount++;
if ((tab = table) != null && size > 0) {
size = 0;
for (int i = 0; i < tab.length; ++i)
tab[i] = null;
}
}
HashMap其实这段代码特别简单,为什么贴出来呢,是因为我在看过别的博客里产生过疑问,到底是clear好还是新建一
个HashMap好。我认为clear()比新建一个HashMap好。下面从空间复杂度和时间复杂度来解释一下。
从时间角度来看,这个循环是非常简单无复杂逻辑,并不十分耗资源。而新建一个HashMap,首先他在在堆内存中年轻代中查看是否有足够空间能够存储,如果能够存储,那么创建顺利完成,但如果HashMap非常大,年轻代很难有足够的空间存储,如果老年代中有足够空间存储这个HashMap,那么jvm会将HashMap直接存储在老年代中,如果老年代中空间不够,这时候会触发一次minor gc,会产生小规模的gc停顿,如果发生minor gc之后仍不能存储HashMap,那么会发生整个堆的gc,也就是
full gc,这个gc停顿是很恐怖的。实际上的gc顺序就是这样的,并且可能发生多次minor gc和full gc,如果发现年轻代和老年代
均不能存储HashMap,那么就会触发OOM,而clear()是肯定不会触发OOM的,所以数据里特别大的情况下,千万不要创建一
个新的HashMap代替clear()方法。
从空间角度看,原HashMap虽然不用,如果数据未被清空,是不可能被jvm回收的,因为HashMap是强引用类型的,从而造成内存泄漏。所以综上所述我
是不建议新建一个HashMap代替clear()的,并且很多源码中clear()方法很常用,这就是最好的证明。
四、总结
(1)HashMap允许NULL值,NULL键
(2)不要轻易改变负载因子,负载因子过高会导致链表过长,查找键值对时间复杂度就会增高,负载因子过低会导致hash桶的数量过多,空间复杂度会增高
(3)Hash表每次会扩容长度为以前的2倍
(4)HashMap是多线程不安全的,我在JDK 1.7进行多线程put操作,之后遍历,直接死循环,CPU飙到100%,在JDK 1.8中
进行多线程操作会出现节点和value值丢失,为什么JDK1.7与JDK1.8多线程操作会出现很大不同,是因为JDK 1.8的作者对resize
方法进行了优化不会产生链表闭环。这也是本章的重点之一,具体的细节大家可以去查阅资料。这里我就不解释太多了
(5)尽量设置HashMap的初始容量,尤其在数据量大的时候,防止多次resize
(6)HashMap在JDK 1.8在做了很好性能的提升,我看到过在JDK1.7和JDK1.8get操作性能对比JDK1.8是要优于JDK 1.7的,
大家感兴趣的可以自己做个测试,所以还没有升级到JDK1.8的小伙伴赶紧的吧。
总结就把类注释的给搬过来了,其实在本篇文章中有一个知识点没有详细分析,就是HashMap在多线程不安全的原因,尤其扩
容在JDK 1.7 会产生链表闭环,因为要画很多图,我还没找到合适的工具,后期补充吧。