Sklearn fit , transform ,fit_transform

一、关于sklearn fit 和transform

sklearn里的封装好的各种算法使用前都要fit;

fit之后,可以调用各种API方法,transform是其中一个API;

fit原义指的是安装、使适合的意思,有点train的含义,但是和train不同的是,它并不是一个训练的过程,而是一个适配的过程,过程都是确定的,最后得到一个可用于转换的有价值的信息。(目前可以简单理解为:fit获取了关于数据的有效信息,transform利用fit提供的有效信息进行特征转换

二、fit、transform、fit_transform

常用情况分为两大类

1、数据预处理中的使用

fit(): 求得训练集X的均值,方差,最大值,最小值,这些训练集X固有的属性。

transform(): 在fit的基础上,进行标准化,降维,归一化等操作。

fit_transform(): fit和transform的组合,既包括了训练又包含了转换。

使用方法

第一步:fit_transform(trainData)

对trainData进行fit的整体指标,找到该part的整体指标,如均值、方差、最大值最小值等等(根据具体转换的目的);

第二步:transform(testData)

对testData使用同样的均值、方差、最大最小值等指标进行转换,从而保证train、test处理方式相同。

注意:

必须先用fit_transform(trainData),之后再transform(testData)

直接transform(testData),程序会报错

如果fit_transfrom(trainData)后,使用fit_transform(testData)而不transform(testData),虽然也能归一化,但是两个结果不是在同一个“标准”下的,具有明显差异。

2、各种算法的fit,transform方法

例1:CountVectorizer

sklearn的CountVectorizer库根据输入数据获取词频矩阵(稀疏矩阵);

fit(raw_documents) :根据CountVectorizer参数规则进行操作,比如滤除停用词等,拟合原始数据,生成文档中有价值的词汇表;

transform(raw_documents):使用符合fit的词汇表或提供给构造函数的词汇表,从原始文本文档中提取词频,转换成词频矩阵;

fit_transform(raw_documents, y=None):学习词汇词典并返回术语 - 文档矩阵(稀疏矩阵)。

用法:

from sklearn.feature_extraction.textimport CountVectorizer

# 语料

corpus = ['This is the first document.','This is the this second second document.','And the third one.', 'Is this the first document?']

# 将文本中的词转换成词频矩阵

vectorizer = CountVectorizer()

# 计算某个词出现的次数

X = vectorizer.fit_transform(corpus)

# 查看词频结果

print(X.toarray())

如果有训练数据有测试数据,则:

x_train = vectorizer.fit_transform(train_corpus)

x_test = vectorizer.transform(test_corpus)

例2: TfidfTransformer

from sklearn.feature_extraction.textimport CountVectorizer

from sklearn.feature_extraction.textimport TfidfTransformer

# 语料

corpus = ['This is the first document.','This is the this second second document.','And the third one.', 'Is this the first document?']

# 将文本中的词转换成词频矩阵

vectorizer = CountVectorizer()

# 计算某个词出现的次数

X = vectorizer.fit_transform(corpus)

# 类调用

transformer = TfidfTransformer()

# 将词频矩阵统计成TF-IDF值

tfidf = transformer.fit_transform(X)

# 查看数据结构tfidf[i][j]表示i类文本中tf-idf权重

print(tfidf.toarray())

如果有训练数据有测试数据,则:

X_train = vectorizer.fit_transform(train_corpus)

X_test = vectorizer.transform(test_corpus)

tfidf_train = transformer.fit_transform(X_train)

tfidf_test = transformer.transform(X_test)

三、从另一角度理解fit和transform

fit方法的主要工作是获取特征和目标值有价值的信息,transform方法用来对特征进行转换

从可利用信息的角度来说,转换分为无信息转换和有信息转换。

无信息转换是指不利用任何其他信息进行转换,比如指数、对数函数转换等。

有信息转换从是否利用目标值向量又可分为无监督转换和有监督转换。

无监督转换指只利用特征的统计信息的转换,统计信息包括均值、标准差、边界等等,比如标准化、PCA法降维等。

有监督转换指既利用了特征信息又利用了目标值信息的转换,比如通过模型选择特征、LDA法降维等。

只有有信息的转换类的fit方法才实际有用,在这点上,fit方法和模型训练时的fit方法就能够联系在一起了:都是通过分析特征和目标值,提取有价值的信息对于转换类来说是某些统计量;对于模型来说可能是特征的权值系数等。

另外,只有有监督的转换类的fit和transform方法才需要特征和目标值两个参数,即有监督学习的算法fit(x,y)传两个参数。

无监督学习的算法是fit(x),即传一个参数,比如降维、特征提取、标准化。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,324评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,356评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,328评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,147评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,160评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,115评论 1 296
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,025评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,867评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,307评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,528评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,688评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,409评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,001评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,657评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,811评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,685评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,573评论 2 353

推荐阅读更多精彩内容