Java桥接模式

概念

桥梁模式是对象的结构模式。又称为柄体(Handle and Body)模式或接口(Interface)模式。桥梁模式的用意是“将抽象化(Abstraction)与实现化(Implementation)脱耦,使得二者可以独立地变化”

桥接模式的用意

桥梁模式虽然不是一个使用频率很高的模式,但是熟悉这个模式对于理解面向对象的设计原则,包括“开-闭”原则以及组合/聚合复用原则都很有帮助。理解好这两个原则,有助于形成正确的设计思想和培养良好的设计风格。

桥梁模式的用意是“将抽象化(Abstraction)与实现化(Implementation)脱耦,使得二者可以独立地变化”。这句话很短,但是第一次读到这句话的人很可能都会思考良久而不解其意。

这句话有三个关键词,也就是抽象化、实现化和脱耦。理解这三个词所代表的概念是理解桥梁模式用意的关键。

1. 抽象化
从众多的事物中抽取出共同的、本质性的特征,而舍弃其非本质的特征,就是抽象化。例如苹果、香蕉、生梨、 桃子等,它们共同的特性就是水果。得出水果概念的过程,就是一个抽象化的过程。要抽象,就必须进行比较,没有比较就无法找到在本质上共同的部分。共同特征是指那些能把一类事物与他类事物区分开来的特征,这些具有区分作用的特征又称本质特征。因此抽取事物的共同特征就是抽取事物的本质特征,舍弃非本质的特征。 所以抽象化的过程也是一个裁剪的过程。在抽象时,同与不同,决定于从什么角度上来抽象。抽象的角度取决于分析问题的目的。

通常情况下,一组对象如果具有相同的特征,那么它们就可以通过一个共同的类来描述。如果一些类具有相同的特征,往往可以通过一个共同的抽象类来描述。

**2. 实现化
抽象化给出的具体实现,就是实现化。

一个类的实例就是这个类的实例化,一个具体子类是它的抽象超类的实例化。

**3. 脱耦化
所谓耦合,就是两个实体的行为的某种强关联。而将它们的强关联去掉,就是耦合的解脱,或称脱耦。在这里,脱耦是指将抽象化和实现化之间的耦合解脱开,或者说是将它们之间的强关联改换成弱关联。

所谓强关联,就是在编译时期已经确定的,无法在运行时期动态改变的关联;所谓弱关联,就是可以动态地确定并且可以在运行时期动态地改变的关联。显然,在Java语言中,继承关系是强关联,而聚合关系是弱关联。

将两个角色之间的继承关系改为聚合关系,就是将它们之间的强关联改换成为弱关联。因此,桥梁模式中的所谓脱耦,就是指在一个软件系统的抽象化和实现化之间使用聚合关系而不是继承关系,从而使两者可以相对独立地变化。这就是桥梁模式的用意。

桥梁模式的结构

可以看出,这个系统含有两个等级结构:

一、由抽象化角色和修正抽象化角色组成的抽象化等级结构。

二、由实现化角色和两个具体实现化角色所组成的实现化等级结构。

桥梁模式所涉及的角色有:

●  抽象化(Abstraction)角色:抽象化给出的定义,并保存一个对实现化对象的引用。

●  修正抽象化(RefinedAbstraction)角色:扩展抽象化角色,改变和修正父类对抽象化的定义。

●  实现化(Implementor)角色:这个角色给出实现化角色的接口,但不给出具体的实现。必须指出的是,这个接口不一定和抽象化角色的接口定义相同,实际上,这两个接口可以非常不一样。实现化角色应当只给出底层操作,而抽象化角色应当只给出基于底层操作的更高一层的操作。

●  具体实现化(ConcreteImplementor)角色:这个角色给出实现化角色接口的具体实现。

抽象化角色就像是一个水杯的手柄,而实现化角色和具体实现化角色就像是水杯的杯身。手柄控制杯身,这就是此模式别名“柄体”的来源。

对象是对行为的封装,而行为是由方法实现的。在这个示意性系统里,抽象化等级结构中的类封装了operation()方法;而实现化等级结构中的类封装的是operationImpl()方法。当然,在实际的系统中往往会有多于一个的方法。

抽象化等级结构中的方法通过向对应的实现化对象的委派实现自己的功能,这意味着抽象化角色可以通过向不同的实现化对象委派,来达到动态地转换自己的功能的目的。

源代码

/**
 * 抽象化角色类,它声明了一个方法operation(),并给出了它的实现。
 * 这个实现是通过向实现化对象的委派(调用operationImpl()方法)实现的。
 */
public abstract class Abstraction {

    //持有一个实现化(Implementor)角色接口
    private Implementor impl;

    public Implementor getImpl() {
        return impl;
    }

    public void setImpl(Implementor impl) {
        this.impl = impl;
    }

    //示例方法
    public void operation(){
        impl.operationImpl();
    }

}
/**
 * 修正抽象化角色,这里可以重写父类的operation方法,
 * 也可以不重写,不重写即调用父类的operation方法
 */
public class RefinedAbstraction extends Abstraction {

    //其他操作方法
    public void otherOperation(){}

}
/**
 * 实现化(Implementor)角色接口
 */
public abstract class Implementor {

    /**
     * 示例方法,实现抽象部分需要的某些具体功能
     */
    public abstract void operationImpl();

}
/**
 * 具体实现化角色
 */
public class ConcreteImplementorA extends Implementor {
    @Override
    public void operationImpl() {
        System.out.println("实现A功能");
    }
}
/**
 * 具体实现化角色
 */
public class ConcreteImplementorB extends Implementor {
    @Override
    public void operationImpl() {
        System.out.println("实现B功能");
    }
}
/**
 * 客户端
 */
public class Client {
    public static void main(String[] args) {
        Abstraction abstraction = new RefinedAbstraction();

        Implementor implA = new ConcreteImplementorA();

        abstraction.setImpl(implA);
        abstraction.operation();

        System.out.println("----");

        Implementor implB = new ConcreteImplementorB();

        abstraction.setImpl(implB);
        abstraction.operation();
    }
}

一般而言,实现化角色中的每个方法都应当有一个抽象化角色中的某一个方法与之对应,但是反过来则不一定。换言之,抽象化角色的接口比实现化角色的接口宽。抽象化角色除了提供与实现化角色相关的方法之外,还有可能提供其他的方法;而实现化角色则往往仅为实现抽象化角色的相关行为而存在。

使用桥梁模式解决发送信息问题

根据业务的功能要求,业务的变化具有两个维度,一个维度是抽象的消息,包括普通消息、加急消息和特急消息,这几个抽象的消息本身就具有一定的关系,加急消息和特急消息会扩展普通消息;另一个维度是在具体的消息发送方式上,包括系统内短消息、邮件和手机短消息,这几个方式是平等的,可被切换的方式。



现在出现问题的根本原因,就在于消息的抽象和实现是混杂在一起的,这就导致了一个纬度的变化会引起另一个纬度进行相应的变化,从而使得程序扩展起来非常困难。

要想解决这个问题,就必须把这两个纬度分开,也就是将抽象部分和实现部分分开,让它们相互独立,这样就可以实现独立的变化,使扩展变得简单。抽象部分就是各个消息的类型所对应的功能,而实现部分就是各种发送消息的方式。按照桥梁模式的结构,给抽象部分和实现部分分别定义接口,然后分别实现它们就可以了。


源码

/**
 * 抽象化角色
 */
public abstract class AbstractMessage {

    //持有发送消息的实现化角色接口
    private MessageImplementor implementor;

    public void setImplementor(MessageImplementor implementor) {
        this.implementor = implementor;
    }

    //实际调用的是实现化角色的发送消息方法
    public void sendMessage(String msg){
        this.implementor.sendMessage(msg);
    }
}

/**
 * 普通消息
 */
public class SimpleMessage extends AbstractMessage {

    @Override
    public void sendMessage(String msg) {
        //普通消息不做任何处理
        super.sendMessage(msg);
    }
}

/**
 * 加急消息
 */
public class UrgencyMessage extends AbstractMessage {

    /**
     * 这里有点像装饰模式,可以在
     * 实际调用发送消息之前加上具体的业务逻辑
     * @param msg
     */
    @Override
    public void sendMessage(String msg) {
        msg += "(这个是加急消息)";
        super.sendMessage(msg);
    }
}
/**
 * 实现消息发送的接口
 */
public interface MessageImplementor {

    /**
     * 发送消息
     * @param msg
     */
    public void sendMessage(String msg);

}

/**
 * 短信消息实现类
 */
public class MessageSMS implements MessageImplementor {
    @Override
    public void sendMessage(String msg) {
        System.out.println("发送短信:" + msg);
    }
}

/**
 * 邮件消息实现类
 */
public class MessageEmail implements MessageImplementor {
    @Override
    public void sendMessage(String msg) {
        System.out.println("邮件信息:" + msg);
    }
}
/**
 * 客户端
 */
public class Client {
    public static void main(String[] args) {
        //发送短信
        MessageImplementor sms = new MessageSMS();
        //发送邮件
        MessageImplementor email = new MessageEmail();

        //普通消息
        AbstractMessage simpleMessage = new SimpleMessage();
        //加急消息
        AbstractMessage urgencyMessage = new UrgencyMessage();

        simpleMessage.setImplementor(sms);
        simpleMessage.sendMessage("test");
        simpleMessage.setImplementor(email);
        simpleMessage.sendMessage("test");

        urgencyMessage.setImplementor(sms);
        urgencyMessage.sendMessage("test");
        urgencyMessage.setImplementor(email);
        urgencyMessage.sendMessage("test");


    }
}

观察上面的例子会发现,采用桥梁模式来实现,抽象部分和实现部分分离开了,可以相互独立的变化,而不会相互影响。因此在抽象部分添加新的消息处理(特急消息),对发送消息的实现部分是没有影响的;反过来增加发送消息的方式(手机短消息),对消息处理部分也是没有影响的。

桥梁模式的优点

1. 分离抽象和实现部分

桥梁模式分离了抽象部分和实现部分,从而极大地提供了系统的灵活性。让抽象部分和实现部分独立出来,分别定义接口,这有助于对系统进行分层,从而产生更好的结构化的系统。

2. 更好的扩展性

桥梁模式使得抽象部分和实现部分可以分别独立地扩展,而不会相互影响,从而大大提高了系统的可扩展性。

桥梁模式在Java中的使用

桥梁模式在Java应用中的一个非常典型的例子就是JDBC驱动器。JDBC为所有的关系型数据库提供一个通用的界面。一个应用系统动态地选择一个合适的驱动器,然后通过驱动器向数据库引擎发出指令。这个过程就是将抽象角色的行为委派给实现角色的过程。
抽象角色可以针对任何数据库引擎发出查询指令,因为抽象角色并不直接与数据库引擎打交道,JDBC驱动器负责这个底层的工作。由于JDBC驱动器的存在,应用系统可以不依赖于数据库引擎的细节而独立地演化;同时数据库引擎也可以独立于应用系统的细节而独立的演化。两个独立的等级结构如下图所示,左边是JDBC API的等级结构,右边是JDBC驱动器的等级结构。应用程序是建立在JDBC API的基础之上的。



应用系统作为一个等级结构,与JDBC驱动器这个等级结构是相对独立的,它们之间没有静态的强关联。应用系统通过委派与JDBC驱动器相互作用,这是一个桥梁模式的例子。
JDBC的这种架构,把抽象部分和具体部分分离开来,从而使得抽象部分和具体部分都可以独立地扩展。对于应用程序而言,只要选用不同的驱动,就可以让程序操作不同的数据库,而无需更改应用程序,从而实现在不同的数据库上移植;对于驱动程序而言,为数据库实现不同的驱动程序,并不会影响应用程序。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,242评论 5 459
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,769评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,484评论 0 319
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,133评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,007评论 4 355
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,080评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,496评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,190评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,464评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,549评论 2 309
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,330评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,205评论 3 312
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,567评论 3 298
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,889评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,160评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,475评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,650评论 2 335

推荐阅读更多精彩内容