实验楼21期--机器学习--信用卡持卡人风险预测

参加实验楼的楼赛21期,关于机器学习的, 我以前没怎么接触过,所以是临时在网上查找资料解答的. 如果有一些错误或者是不完善的地方,欢迎指出.

题目

介绍

题目提供一个来自某银行的真实数据集,数据集前 10 行预览如下:

其中:

  • 第 1~6 列为客户近期历史账单信息。
  • 第 7 列为该客户年龄。
  • 第 8 列为该客户性别。(Female, Male)
  • 第 9 列为该客户教育程度。(Graduate School, University, High School, Others)
  • 第 10 列为该客户婚姻状况。(Married, Single, Others)
  • 第 11 列为客户持卡风险状况 。(LOW, HIGH)

此外:

  • 训练数据集 credit_risk_train.csv 总共有 20000 条数据。
  • 测试数据集 credit_risk_test.csv 总共有 5000 条数据。

下载:

wget http://labfile.oss.aliyuncs.com/courses/1109/credit_risk_train.csv
wget http://labfile.oss.aliyuncs.com/courses/1109/credit_risk_test.csv

目标

你需要使用训练数据集构建机器学习分类预测模型,并针对测试数据集进行预测,准确率 <math><semantics><annotation encoding="application/x-tex">\displaystyle \geq 0.8</annotation></semantics></math>≥0.8 即为合格。

要求

  1. 提交时,请将预测结果按测试数据集中每条数据的排列顺序,以单列数据的形式存入 credit_risk_pred.csv 数据文件中,列名为 RISK

  2. 需要将 credit_risk_pred.csv 放置于 /home/shiyanlou/Code 路径下方。

credit_risk_pred.csv 数据文件仅存在 RISK 列,示例如下:

提示

  • 你可能会用到 scikit-learn 提供的分类预测模型。
  • 你可能会用到 Pandas 对数据进行预处理。
  • 完成本题目可以自由使用第三方模块,在线环境 /home/shiyanlou/anaconda3/bin/python 路径下有 scikit-learn, pandas 等常用模块。

知识点

  • 机器学习分类预测

分析与解答

模型选择

首先要选出合适的模型, 最开始随便试了 SGDClassifier,LogisticRegression等模型, 都没有达到0.8的准确度
然后上网查找,根据这张图选择了 svm 支持向量机模型

model

from sklearn.svm import SVC as MODEL

读取数据

可以用 pandas 读取 csv 数据, 并进行一些预处理, 并分好训练数据集与测试数据集

import pandas as pd
def getData():

    data = pd.read_csv(trainfile)  
    test = pd.read_csv(testfile)  #names = cols)   #.replace(to_replace ='"',value = np.nan)

    data = label(data)
    test = label(test)
    
    x_train,y_train =data.iloc[:,:-1].as_matrix(), data.iloc[:,-1].as_matrix()
    x_test = test.iloc[:,:].as_matrix()
    y_test=None
    return x_train,y_train, x_test,y_test

非数值特征处理

有些特征是非数值的, 需要进行编码, 比如 gender education 等, 编码有很多方式, 比如 onehotkey, 由于这里是字符串类型的, 可以用 labelencoder , 它可以将一个特征下的值集合一次编码为 0,1,2...

要想解码, 保存最后的预测结果. 我设置了一个全局变量 converetor , 来保存这个 encoder

from sklearn.preprocessing import LabelEncoder as LE

convertor = None # result convertor

def label(data):
    global convertor
    for col in data.columns:
        if data[col].dtype == 'object':
            le = LE()
            if col=='RISK':
                convertor = le
            le.fit(data[col])
            data[col]= le.transform(data[col])
    return data

拟合预测

fit 函数拟合时, 不同的模型时间不一样, 适应的场景,数据也不一样, 准确度也不一样

def predict(model=MODEL):        
    predictor = model()
    x_train,y_train,x_test,_ = getData()
    predictor.fit(x_train,y_train)
    res = predictor.predict(x_test)
    save(res)

保存数据

用 pandas 保存为 csv

def save(result):
    result = convertor.inverse_transform(result)
    dataframe = pd.DataFrame({'RISK':result})
    dataframe.to_csv('credit_risk_pred.csv',index=False,sep=',')

总结与反思

时间匆忙, 这个代码比较粗略,还有很多可以考虑的地方, 比如检验一些值的方差是否过大, 特征缩放, 评估模型的准确度等等

最后, 感觉这个网站,这个比赛挺有趣的, 如果想注册, 可以点这里, 邀请了:)

代码

import pandas as pd
from sklearn.preprocessing import LabelEncoder as LE
from sklearn.svm import SVC as MODEL

trainfile = 'credit_risk_train.csv'
testfile = 'credit_risk_test.csv'
convertor = None # result convertor

def label(data):
    global convertor
    for col in data.columns:
        if data[col].dtype == 'object':
            le = LE()
            if col=='RISK':
                convertor = le
            le.fit(data[col])
            data[col]= le.transform(data[col])
    return data

def getData():

    data = pd.read_csv(trainfile)  
    test = pd.read_csv(testfile)  #names = cols)   #.replace(to_replace ='"',value = np.nan)

    data = label(data)
    test = label(test)
    
    x_train,y_train =data.iloc[:,:-1].as_matrix(), data.iloc[:,-1].as_matrix()
    x_test = test.iloc[:,:].as_matrix()
    y_test=None
    return x_train,y_train, x_test,y_test

def save(result):
    result = convertor.inverse_transform(result)
    dataframe = pd.DataFrame({'RISK':result})
    dataframe.to_csv('credit_risk_pred.csv',index=False,sep=',')

def predict(model=MODEL):        
    predictor = model()
    x_train,y_train,x_test,_ = getData()
    predictor.fit(x_train,y_train)
    res = predictor.predict(x_test)
    save(res)

if __name__=='__main__':
    predict()

参考资料

[1] : 数据预处理中的数据编码问题 | python 数据挖掘思考笔记 (2)
[2]: sklearn.preprocessing.LabelEncode

[3]: sklearn: 选择正确的模型
[4]: 利用 Scikit Learn 的 Python 数据预处理实战指南

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,928评论 6 509
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,748评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,282评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,065评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,101评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,855评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,521评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,414评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,931评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,053评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,191评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,873评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,529评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,074评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,188评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,491评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,173评论 2 357

推荐阅读更多精彩内容