神经形态计算or深度学习

14020199044刘发强

嵌牛导读

基于神经元软件模拟的人工神经网络在机器学习领域表现极佳且已经具有了一定的工业应用价值,但是计算量大、功耗高。另一条路线是直接用微电子电路模拟神经元的特性,即神经形态芯片。后者更加接近人脑的信息处理机制,表现出更好的并行性、容错性、低功耗等特点,也有助于模拟人脑时空多尺度的信息处理特点。类脑计算始于20世纪80年代,其中代表性的项目有欧盟的FACETS及其后续项目Brainscale、IBM的TrueNorth等。

牵牛鼻子

类脑计算;Truenorth;

嵌牛提问

深度学习的地位在20年内能否被神经形态计算芯片取代?

嵌牛正文

TrueNorth是IBM 2014年发布的仿人脑芯片,在这个只有邮票大小的硅片上,集成了100万个“神经元”,256个“突触”,4096个并行分布的神经内核,用了54亿个晶体管,然而功耗却只有70mW。之前,曾报道过IBM用TrueNorth芯片在构建了电子的啮齿动物大脑的新闻,近日,IBM又公布了与美国空军研究实验室、美国陆军研究实验室、以及劳伦斯·利物莫国家实验室在TrueNorth芯片应用方面合作的最新成果。

以下是TrueNorth的应用领域:

手势识别(gesture recognition )

情绪识别(emotion recognition )

光流(optic flow )

图像分类和对象追踪(image classification and object tracking)

实时的时空感官信息处理(real-time spatio-temporal sensory information processing )

机器学习(machine learning )

机器人(robotics )

实时语音识别(always-on speech recognition )

音频特征提取(audio feature extraction )

二进制映像分类(binary image classification )

概率推理(probabilistic inference )

低能耗的神经形态分类器(energy-efficient neuromorphic classifiers )

递归神经网络(recurrent neural networks )

生成模型(generative models )

视觉显著性网络(visual saliency networks )

文本图像识别(text image recognition )

移动超声波(mobile ultrasound )

快速的稀疏逼近(fast sparse approximation)

......

2016年对于仿人脑计算来说意义重大。IBM的TrueNorth团队在《针对快速、高能效神经形态计算的卷积网络》(“Convolutional networks for fast, energy-efficient neuromorphic computing”)论文中证明了,仿人脑计算可以用前所未有的超低能耗执行神经网络推理。简单地说,TrueNorth芯片并没有采用冯诺依曼架构,而是模仿了人类大脑的神经元结构,它的计算效率和可扩展性都远胜今天的计算机。

加载了神经网络模型的TrueNorth芯片,可作为实时感知流推理引擎使用,而且能够在快速、准确分类的同时保持超低功耗。TrueNorth拥有100万个神经元,邮票大小,能力相当于一台集成了“神经突触”的超级计算机,然而功耗却只有70mW,用手机的电池就够跑它跑一个星期了。

雷锋网了解到,最近,IBM刚刚联合劳伦斯·利物莫国家实验室、美国空军研究实验室、美国陆军研究实验室,共同在享有盛誉的2016 IEEE超级计算会议上发表了关于TrueNorth的第五篇论文。在论文中,IBM总结了12年半以来的成果。

IBM的三个合作伙伴:美国陆军研究实验室,美国空军研究实验室,以及劳伦斯·利物莫国家实验室,分别在论文展示了不同的TrueNorth系统。

美国陆军研究实验室展示了数据传输方案模型,TrueNorth的低功耗特性使得在收集数据的同时能够进行计算。该模型使用了单芯片的NS1e主板和一台安卓平板,美国陆军研究实验室的科研人员允许访问者在平板上手写算数运算式,然后手写的算数式会被传送到NS1e上进行字符识别,而那些被识别的字符将会被传送回平板进行计算。

当然,实验的最终目的并不是要做一个手写计算器,而是想展示如何利用TrueNorth芯片的低功耗和实时模式识别特性,帮助在部署数据收集时,减少延迟、降低数据复杂性、减少传输宽带需求,同时解决分布式系统终端的数据存储需求。

美国空军研究实验室则展示了另一个应用模型:利用TrueNorth横向扩展系统来执行并行数据的文本提取和识别任务。在这个应用中,图像文本被分割成单独的字符,然后被传输到美国空军研究实验室的NS1e16 TrueNorth系统里进行并行字符识别。归类之后的结果将会被传送到基于推理的自然语言模型中来重建单词和句子。这个系统每秒中可以处理16000个字符。美国空军研究实验室计划将词句的推理算法也植入到TrueNorth中。

得益于TrueNorth芯片自然堆叠的特性,劳伦斯·利弗莫尔国家实验室用有16块芯片的NS16e扩展系统,通过大型的神经模型和更复杂的算法,来探索后冯·诺依曼时代的计算潜力。在超级计算的论文中,他们探索了单芯片在监控增材制造过程中的原位合成(一种最近发展起来制备复合材料的新方法)的应用。

劳伦斯利弗莫尔国家实验室训练了一个TrueNorth网络,能够追踪激光熔化机的焊点质量,而且可以识别7种等级。实时的焊点质量监控使得闭环工艺改进和立即排除缺陷部件成为可能。这只是劳伦斯·利弗莫尔国家实验室正在开发的,能够展现TrueNorth作为可扩展平台的低功耗和实时推理特性的几个应用之一。

目前,TrueNorth仍然只是一个概念验证的研究模型。IBM表示,未来将发布更多的API,让合作伙伴能够将实时传感器连接到TrueNorth。像三星的digital eye以及加州大学欧文分校的自动驾驶机器人的早期模型都已经在试验中。IBM的首席科学家Dharmendra Modha则表示:“我有信心,我们可以在未来的4年里达到商业化的规模。”

距离TrueNorth的发布已经两年了,相比发布时的轰动,它的前景在近两年里一直被质疑。借着AI大热的东风,TrueNort会迎来真正的爆发吗?

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,294评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,780评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,001评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,593评论 1 289
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,687评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,679评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,667评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,426评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,872评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,180评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,346评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,019评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,658评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,268评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,495评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,275评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,207评论 2 352

推荐阅读更多精彩内容