机器学习之感知机

什么是感知机

感知机是二分类的线性分类模型,输入为实例的特征向量,输出为实例的类别(取+1和-1)。
感知机目的在求一个可以将实例分开的超平面,为了求它,我们用到基于误分类的损失函数和梯度下降的优化策略。

感知机模型

比如x表示n维的数据,y表示数据的类别。则感知机公式可表示为:
f(x) = sign(wx + b)
其中w,b为模型参数,w为权值,b为偏置。w
x表示w,x的内积。这里sign是激励函数:

sign(x)

该感知机超平面的线性方程为:
w*x + b = 0
它的几何意义是:

Paste_Image.png

该平面(w1x1 + w2x2 + b= 0)距离在轴上的坐标为:
(0 , -b/w2)
(-b/w1 , 0)
(后面的代码会用到,这里提前说明下。)

这里再说明其他的一点知识并证明下 w为什么是超平面的法向量:
Paste_Image.png
这里再补充点超平面的知识:

超平面分离定理是应用凸集到最优化理论中的重要结果,这个结果在最优化理论中有重要的位置。所谓两个凸集分离,直观地看是指两个凸集合没有交叉和重合的部分,因此可以用一张超平面将两者隔在两边。

回归正题:
我们将大于0的分为+1类,小于0的分为-1类。有些比如大于0的判断为-1类或者相反则就产生了损失,刚开始第一反应就是用误分类点的数目越少作为损失函数,但是这样的损失函数的w, b并不是连续可导,无法进行优化。
于是我们想转到另一种选择,就是误分类点到超平面的距离越短越好。距离公式如下:

Paste_Image.png

如果忘记距离公式给你个提示:

Paste_Image.png

而我们知道每一个误分类点都满足-yi(wx+b)>0
因为当我们数据点正确值为+1的时候,你误分类了,那么你判断为-1,则算出来(w
x0+b)<0,所以满足-yi(w*x+b)>0

当数据点是正确值为-1的时候,你误分类了,那么你判断为+1,则算出来(wx0+b>0),所以满足-yi(wx+b)>0
则我们可以将绝对值符号去掉,得到误分类点的距离为:

Paste_Image.png

因为你知道,所以可以直接将绝对值去掉。那么可以得到总距离为:
Paste_Image.png

不考虑w范数分之一(考虑和不考虑结果都一样,经过实验证明),我们可以得到损失函数为:
Paste_Image.png

其中M为误分类点的数目。
当我们已经有了一个目标是最小化损失函数,如下图:
Paste_Image.png

我们就可以用常用的梯度下降方法来进行更新,对w,b参数分别进行求偏导可得:
Paste_Image.png

那么我们任意初始化w,b之后,碰到误分类点时,采取的权值更新为w,b分别为:
Paste_Image.png

整理下整个过程(比如二维平面):

a.选定初值w1,w2,b (相当于初始化了一个超平面)
b.在训练集中选取数据(xi,yi)(任意抽取数据点,判断是否所有数据点判断完成没有误分累点了,如果没有了,直接结束算法,如果还有进入c)
c.如果yi(w*xi+b)<0(说明是误分类点,就需要更新参数)
那么进行参数更新!更新方式如下:


Paste_Image.png

其中η为学习率在0-1之间。

代码讲解

初始化数据


Paste_Image.png

Paste_Image.png

循环迭代更新


Paste_Image.png

Paste_Image.png

Paste_Image.png

Paste_Image.png

Paste_Image.png

Paste_Image.png

欢迎关注深度学习自然语言处理公众号

image
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容