prometheus监控 Kubernetes (k8s)集群应用

上一节介绍了Prometheus的数据指标是通过一个公开的 HTTP(S) 数据接口获取到的,不需要单独安装监控的 agent,只需要暴露一个 metrics 接口,Prometheus 就会定期去拉取数据;对于一些普通的 HTTP 服务,完全可以直接重用这个服务,添加一个/metrics接口暴露给 Prometheus;而且获取到的指标数据格式是非常易懂的,不需要太高的学习成本。

现在很多服务从一开始就内置了一个/metrics接口,比如 Kubernetes 的各个组件、istio 服务网格都直接提供了数据指标接口。有一些服务即使没有原生集成该接口,也完全可以使用一些 exporter 来获取到指标数据,比如 mysqld_exporter、node_exporter,这些 exporter 就有点类似于传统监控服务中的 agent,作为一直服务存在,用来收集目标服务的指标数据然后直接暴露给 Prometheus。

普通应用监控

前面已经学习了 ingress 的使用,我们采用的是Traefik作为 ingress-controller,是 Kubernetes 集群内部服务和外部用户之间的桥梁。Traefik 本身内置了一个/metrics的接口,但是需要在参数中配置开启:(traefik.toml)

[metrics]
  [metrics.prometheus]
    entryPoint = "traefik"
    buckets = [0.1, 0.3, 1.2, 5.0]

需要在traefik.toml的配置文件中添加上面的配置信息,然后更新 ConfigMap 和 Pod 资源对象即可,traefik.toml 配置文件通过 ConfigMap 对象挂载到 traefik pod 中去:

$ kubectl create configmap traefik-conf --from-file=traefik.toml -n kube-system

最终的traefik.yaml

---
kind: Deployment
apiVersion: extensions/v1beta1
metadata:
  name: traefik-ingress-controller
  namespace: kube-system
  labels:
    k8s-app: traefik-ingress-lb
spec:
  replicas: 2
  selector:
    matchLabels:
      k8s-app: traefik-ingress-lb
  template:
    metadata:
      labels:
        k8s-app: traefik-ingress-lb
        name: traefik-ingress-lb
    spec:
      serviceAccountName: traefik-ingress-controller
      terminationGracePeriodSeconds: 60
      volumes:
      - name: config
        configMap:
          name: traefik-conf
      containers:
      - image: traefik
        name: traefik-ingress-lb
        volumeMounts:
        - mountPath: "/config"
          name: "config"
        ports:
        - name: http
          containerPort: 80
          hostPort: 80
        - name: admin
          containerPort: 8080
        args:
        - --configfile=/config/traefik.toml
        - --api
        - --kubernetes
        - --logLevel=INFO
---
kind: Service
apiVersion: v1
metadata:
  name: traefik-ingress-service
  namespace: kube-system
spec:
  selector:
    k8s-app: traefik-ingress-lb
  ports:
    - protocol: TCP
      port: 80
      name: web
    - protocol: TCP
      port: 8080
      name: admin
  type: NodePort

之前的版本中是通过--web--web.metrics.prometheus两个参数进行开启的,要注意查看对应版本的文档。

Traefik Pod 运行后,可以看到的服务 IP:

$ kubectl get svc -n kube-system
NAME                      TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)                       AGE
......
traefik-ingress-service   NodePort    10.101.33.56     <none>        80:31692/TCP,8080:32115/TCP   63d

然后可以使用curl检查是否开启了 Prometheus 指标数据接口,或者通过 NodePort 访问也可以:

$ curl 10.101.33.56:8080/metrics
# HELP go_gc_duration_seconds A summary of the GC invocation durations.
# TYPE go_gc_duration_seconds summary
go_gc_duration_seconds{quantile="0"} 0.000121036
go_gc_duration_seconds{quantile="0.25"} 0.000210328
go_gc_duration_seconds{quantile="0.5"} 0.000279974
go_gc_duration_seconds{quantile="0.75"} 0.000420738
go_gc_duration_seconds{quantile="1"} 0.001191494
go_gc_duration_seconds_sum 0.004353914
go_gc_duration_seconds_count 12
# HELP go_goroutines Number of goroutines that currently exist.
# TYPE go_goroutines gauge
go_goroutines 63
......

从这里可以看到 Traefik 的监控数据接口已经开启成功了,然后就可以将这个/metrics接口配置到prometheus.yml中去了,直接加到默认的prometheus这个 job 下面:(prome-cm.yaml)

apiVersion: v1
kind: ConfigMap
metadata:
  name: prometheus-config
  namespace: kube-system
data:
  prometheus.yml: |
    global:
      scrape_interval: 30s
      scrape_timeout: 30s

    scrape_configs:
    - job_name: 'prometheus'
      static_configs:
        - targets: ['localhost:9090']

    - job_name: 'traefik'
      static_configs:
        - targets: ['traefik-ingress-service.kube-system.svc.cluster.local:8080']

当然,这里只是一个很简单的配置,scrape_configs 下面可以支持很多参数,例如:

  • basic_auth 和 bearer_token:比如提供的/metrics接口需要 basic 认证的时候,通过传统的用户名/密码或者在请求的header中添加对应的 token 都可以支持
  • kubernetes_sd_configs 或 consul_sd_configs:可以用来自动发现一些应用的监控数据

由于这里 Traefik 对应的 servicename 是traefik-ingress-service,并且在 kube-system 这个 namespace 下面,所以这里的targets的路径配置则需要使用FQDN的形式:traefik-ingress-service.kube-system.svc.cluster.local,当然如果你的 Traefik 和 Prometheus 都部署在同一个命名空间的话,则直接填 servicename:serviceport即可。然后重新更新这个 ConfigMap 资源对象:

$ kubectl delete -f prome-cm.yaml
configmap "prometheus-config" deleted
$ kubectl create -f prome-cm.yaml
configmap "prometheus-config" created

现在 Prometheus 的配置文件内容已经更改了,隔一会儿被挂载到 Pod 中的 prometheus.yml 文件也会更新,由于之前的 Prometheus 启动参数中添加了--web.enable-lifecycle参数,所以现在只需要执行一个 reload 命令即可让配置生效:

$ kubectl get svc -n kube-system
NAME         TYPE       CLUSTER-IP     EXTERNAL-IP   PORT(S)                          AGE
prometheus   NodePort   10.102.74.90   <none>        9090:30358/TCP                   3d
$ curl -X POST "http://10.102.74.90:9090/-/reload"

由于 ConfigMap 通过 Volume 的形式挂载到 Pod 中去的热更新需要一定的间隔时间才会生效,所以需要稍微等一小会儿。

reload 这个 url 是一个 POST 请求,所以这里我们通过 service 的 CLUSTER-IP:PORT 就可以访问到这个重载的接口,这个时候我们再去看 Prometheus 的 Dashboard 中查看采集的目标数据:
prometheus dashboard targets

可以看到我们刚刚添加的traefik这个任务已经出现了,然后同样的可以切换到 Graph 下面去,我们可以找到一些 Traefik 的指标数据,至于这些指标数据代表什么意义,一般情况下,可以去查看对应的/metrics接口,里面一般情况下都会有对应的注释。

到这里我们就在 Prometheus 上配置了第一个 Kubernetes 应用。

使用 exporter 监控应用

上面也说过有一些应用可能没有自带/metrics接口供 Prometheus 使用,在这种情况下,就需要利用 exporter 服务来为 Prometheus 提供指标数据。Prometheus 官方为许多应用就提供了对应的 exporter 应用,也有许多第三方的实现,可以前往官方网站进行查看:exporters

比如这里通过一个redis-exporter的服务来监控 redis 服务,对于这类应用,一般会以 sidecar 的形式和主应用部署在同一个 Pod 中,比如这里来部署一个 redis 应用,并用 redis-exporter 的方式来采集监控数据供 Prometheus 使用,如下资源清单文件:(prome-redis.yaml)

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: redis
  namespace: kube-system
spec:
  template:
    metadata:
      annotations:
        prometheus.io/scrape: "true"
        prometheus.io/port: "9121"
      labels:
        app: redis
    spec:
      containers:
      - name: redis
        image: redis:4
        resources:
          requests:
            cpu: 100m
            memory: 100Mi
        ports:
        - containerPort: 6379
      - name: redis-exporter
        image: oliver006/redis_exporter:latest
        resources:
          requests:
            cpu: 100m
            memory: 100Mi
        ports:
        - containerPort: 9121
---
kind: Service
apiVersion: v1
metadata:
  name: redis
  namespace: kube-system
spec:
  selector:
    app: redis
  ports:
  - name: redis
    port: 6379
    targetPort: 6379
  - name: prom
    port: 9121
    targetPort: 9121

可以看到上面我们在 redis 这个 Pod 中包含了两个容器,一个就是 redis 本身的主应用,另外一个容器就是 redis_exporter。现在直接创建上面的应用:

$ kubectl create -f prome-redis.yaml
deployment.extensions "redis" created
service "redis" created

创建完成后,可以看到 redis 的 Pod 里面包含有两个容器:

$ kubectl get pods -n kube-system
NAME                          READY     STATUS    RESTARTS   AGE
prometheus-8566cd9699-gt9wh   1/1       Running   0          3d
redis-544b6c8c54-8xd2g        2/2       Running   0          3m
$ kubectl get svc -n kube-system
NAME         TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)                          AGE
prometheus   NodePort    10.102.74.90    <none>        9090:30358/TCP                   3d
redis        ClusterIP   10.104.131.44   <none>        6379/TCP,9121/TCP                5m

可以通过 9121 端口来校验是否能够采集到数据:

$ curl 10.104.131.44:9121/metrics
# HELP go_gc_duration_seconds A summary of the GC invocation durations.
# TYPE go_gc_duration_seconds summary
go_gc_duration_seconds{quantile="0"} 0
go_gc_duration_seconds{quantile="0.25"} 0
go_gc_duration_seconds{quantile="0.5"} 0
go_gc_duration_seconds{quantile="0.75"} 0
go_gc_duration_seconds{quantile="1"} 0
go_gc_duration_seconds_sum 0
go_gc_duration_seconds_count 0
......
# HELP redis_used_cpu_user_children used_cpu_user_childrenmetric
# TYPE redis_used_cpu_user_children gauge
redis_used_cpu_user_children{addr="redis://localhost:6379",alias=""} 0

同样的,现在只需要更新 Prometheus 的配置文件:

- job_name: 'redis'
  static_configs:
  - targets: ['redis:9121']

由于这里的 redis 服务和 Prometheus 处于同一个 namespace,所以直接使用 servicename 即可。

配置文件更新后,重新加载:

$ kubectl delete -f prome-cm.yaml
configmap "prometheus-config" deleted
$ kubectl create -f prome-cm.yaml
configmap "prometheus-config" created
# 隔一会儿执行reload操作
$ curl -X POST "http://10.102.74.90:9090/-/reload"

这个时候再去看 Prometheus 的 Dashboard 中查看采集的目标数据:
prometheus targets redis

可以看到配置的 redis 这个 job 已经生效了。切换到 Graph 下面可以看到很多关于 redis 的指标数据:
redis metrics

选择任意一个指标,比如redis_exporter_scrapes_total,然后点击执行就可以看到对应的数据图表了:

redis scrapes total

注意,如果时间有问题,需要手动在 Graph 下面调整下时间

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,222评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,455评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,720评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,568评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,696评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,879评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,028评论 3 409
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,773评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,220评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,550评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,697评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,360评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,002评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,782评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,010评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,433评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,587评论 2 350

推荐阅读更多精彩内容