iOS面试必看经典试题分析

不用临时变量怎么实现两个数据的交换?

方式一:加减法的运算方式求解
new_b = a - b + b = a;
new_a = a + b - a = b;
一个简单的运算方式,最重要的思路就是加减法运算的结合性,第一行代码很关键,a = a - b

//方式一:加减法运算
- (void)func2SwapA:(int)a B:(int)b{
    
    a = a - b;
    b = a + b;
    a = b - a;
    NSLog(@"%d,%d",a,b);
}

方式二:异或运算
看这代码可能比较绕,我再拆分一下
new_b = (ab)b = abb = a(bb) = a^0 = a
new_a = (ab)a = aba = aab = (aa)b = 0^b = b
不难发现,异或有一个重要的规律就是:
x^x = 0,
0^x=x,
则可以推理出aba=b

- (void)func1SwapA:(int)a B:(int)b{
    a ^= b;
    b ^= a;
    a ^= b;
    NSLog(@"%d,%d",a,b);
}

举一反三---——示例1
1-1000放在含有1001个元素的数组中,只有唯一的一个元素值重复,其它均只出现一次。每个数组元素只能访问一次,设计一个算法,将它找出来;不用辅助存储空间,能否设计一个算法实现?

分析:其实关于异或运算有一个有趣的现象,假设函数f(n)是自然数1,2,3,...,n的所有数的异或,即f(n)=123...n, 那么,任意的n(n为自然数),我们能够很快的计算出f(n)的值。

if n == 4*m, then f(n) = n
else if n == 4*m + 1, then f(n) = 1
else if n == 4*m + 2, then f(n) = n+1
else n = 0

本题解题方法:我们可以先将1001个数进行异或,在与1-1000的异或进行异或。 这是利用异或运算符的基本性质,相同为0,相异为1。
即 x = (1001个数的异或)^ (123...1000)
相同元素异或之后是0,与重复的那个元素再异或,得到的就是重复的那个元素。

举一反三---——示例2
有N个整数,除了其中的两个数只出现一次以外,其余的所有的数都正好出现两次,如何用最快的方法求出只出现一次的两个数,要求空间复杂度是O(1).(这个题目的答案在下篇文章揭晓)

 关于时间复杂度和空间复杂度,可能很多同学不明白,下面做一个我的理解说明。
  • 时间复杂度
    时间复杂度简单的理解就是执行语句的条数。如果有循环和递归,则忽略简单语句,直接算循环和递归的语句执行次数。
    举个栗子~~不同时间复杂度的情况
    1、 时间复杂度为O(1)
int x = 1; 

2、时间复杂度为O(n)

for(int i=0; i<n; i++) {  
    System.out.println(i);  
}

3、时间复杂度为O(log2n)

int n = 8, count = 0;;  
for(int i=1; i<=n; i *= 2) {  
    count++;  
} 

4、 时间复杂度为O(n2)

int n = 8, count = 0;;  
for(int i=1; i<=n; i++) {  
    for(int j=1; j<=n; j++) {  
        count++;  
    }  
} 
  • 空间复杂度

空间复杂度也很简单的理解为临时变量占用的存储空间。一个简单例子:

//交换两个变量x和y  
int x=1, y=2;  
int temp = x;  
x = y;  
y = temp;

一个临时变量temp,所以空间复杂度为O(1)。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,163评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,301评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,089评论 0 352
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,093评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,110评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,079评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,005评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,840评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,278评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,497评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,667评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,394评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,980评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,628评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,649评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,548评论 2 352

推荐阅读更多精彩内容