讲解:STAT 6014、STATISTICS、R、RDatabase|Matlab

THE UNIVERSITY OF HONG KONGDEPARTMENT OF STATISTICS AND ACTUARIAL SCIENCESTAT 6014/7614 Advanced Statistical LearningAssignment 3 Due Date: December 5, 20191. The dataset ozone.csv records the level of atmospheric ozone concentration and twometeorological variables at different locations in the Los Angeles basin in 1976. The response,referred to as ozone (O3), is the logarithm of the daily maximum of the hourly-average ozoneconcentrations (ppm) in Upland, California. The other two variables are temperature in qF(temp) and inversion base height in feet (ibh). The first few lines of the dataset is shownbelow:> head(ozone)(a) Use R to determine the univariate kernel density estimate for the response variables O3using Sheather and Jones’ plug-in rule for bandwidth selection. How are the ozone levels(logarithm transformed) distributed without taking account of the other variables?(b) Use R to fit a generalized additive model with O3 as response and temp, ibh as additiveexplanatory variables. You may choose a response distribution based on the result obtainedin part (a). Write down the equation of the fitted model with necessary details includingdefinitions of all involved coefficients (if applicable) and regression/smoothing terms.(c) Construct partial prediction plots for the model fitted in part (b).(d) Is there any linear relationship between O3 and the explanatory variables revealed from thefit plots obtained in part (c)? Use R to perform Chi-square test to confirm.(e) Use R to refine the model based on the result in part (d). Write down the final fitted model.(f) From the results obtained above, how does the GAM compare to a GLIM for this dataset?Explain briefly. (You don’t need to fit the GLIM.) 19/20, 1st termP. 22. To fit a nonparametric model ܻ based on a data set, thesmoothing spline estimator is obtained by minimizingwith respect to the regression function ݉, where is the smoothing parameter and.(a) Is it reasonable to replace the second order derivative ݉′′ by the first order derivative ݉′in the objective function ? Explain briefly.(b) What solution for will be obtained for → ∞ ?(c) Below are three smoothing splines fitted for a given data set, for which three values ofthe smoothing parameter,0.0007, 0.02, 0.5, are used. Identify the value of ߣ usedfor each estimate.(d) Suppose that a sample of size is observed as and asmoothing spline is being fitted. The following is a dialogue between two students.Alice: “A cubic function can be uniquely defined by 4 points. Since the fitted regressionfunction must be a natural cubic spline, the resulting fit should be a cubic functionperfectly interpolating the data.”Bob: “How about the value of ? The choice of the smoothing parameter代写STAT 6014、代做STATISTICS、R编程设计 ߣ wouldaffect the fitted model. I don’t think the fitted regression function must be aperfect interpolation.”Briefly comment on their claims.Estimate A Estimate B Estimate C 19/20, 1st termP. 33. The dataset typhoon.csv records the annual numbers of typhoon signal no. 8 issued inHong Kong from 1956 to 2018, and the first few lines are shown below:> head(typhoon)(a) Use R to fit a three-state Poisson-HMM to the annual numbers of typhoon signals.(b) Draw a state transition diagram to show the architecture of the fitted HMM, includingestimates of the model parameters.(c) Use Viterbi decoding to determine the most likely state path for 2014 to 2018.(d) Use posterior decoding to determine the most likely states for 2014 to 2018.(e) Based on the state for year 2018 obtained in part (d), estimate the expected number oftyphoon signal no. 8 that will be issued in 2019.4. The ASIA data set is a small synthetic data set from Lauritzen and Spiegelhalter (1988) thattries to implement a diagnostic model for lung diseases (tuberculosis, lung cancer, orbronchitis) after a visit to Asia. The original data set contains the following variables:A visit to Asia recently (no / yes)S smoker (no / yes)T has tuberculosis (no / yes)L has lung cancer (no / yes)B has bronchitis (no / yes)X positive chest X-ray results (no / yes)D shortness-of-breath (dyspnea) symptom (no / yes)Since the results of a single chest X-ray do not discriminate between lung cancer andtuberculosis, a deterministic variable E is added and determined from the values in variablesT and L:E tuberculosis or lung cancer (no / yes) 19/20, 1st termP. 4The first few lines of the data set asia.csv are shown below:> head(asia) A S T L B E X D1 no yes no no yes no no yes2 no yes no no no no no no3 yes no yes no no yes yes yes4 no no no no yes no no yes5 no no no no no no no yes6 no yes no no no no no yes(a) Use R package bnlearn to fit a Bayesian network by hill-climbing algorithm.(b) Write down the joint probability as a product of conditional probabilities according to thenetwork structure determined in part (a).(c) Based on what was suggested from the network structure, state “True” or “False” or“Uncertain” for each of the following statements.(i) Node L d-separates node S and node X.(ii) A recent visit to Asia affects the chance of the presence of dyspnea.(iii) For a smoker with positive chest X-ray results, whether he/she had recently visitAsia does not affect his/her risk of having bronchitis.(d) Write down the Markov blanket of node E.(e) According to the fitted Bayesian network, how likely is that a non-smoker with positivechest X-ray results would be suffering from tuberculosis? 转自:http://www.6daixie.com/contents/18/4469.html

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,245评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,749评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,960评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,575评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,668评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,670评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,664评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,422评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,864评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,178评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,340评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,015评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,646评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,265评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,494评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,261评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,206评论 2 352

推荐阅读更多精彩内容