xtivreg2和它的山寨者

1. ivreg2 VS xtivreg2

stata官网中的回答:
ivreg2xtivreg2 之间的差异,与regxtreg 之间的差异大体类似。

说人话:
嘛,就是OLS和FE/FD模型的差别啦~
xtivreg2要求必须使用FE/FD模型)

举个栗子:
我们知道,OLS加入虚拟变量(LSDV)等价于FE模型。运行以下命令
ivreg2 ... i.Year i.ID
xtivreg2 ... i.Year,fe
你会惊喜地发现——Wow,估计量完全一致!

2. xtivreg2 VS ivregress

作为IV-GMM估计的利器,xtivreg2 还有另外一个强大的竞争者 ivregress。运行以下命令
xi: xtivreg2 ... i.Year,fe gmm
ivregress gmm ... i.Year i.ID
你又会惊喜地发现——Wow,估计系数完全一致!虽然xtivreg2标准误稍微大一些,但统计显著性也基本一致!

从报告结果的角度考虑,当然是选择xtivreg2啦!一个命令直接报告工具变量的3个假设检验统计量!多么优秀!看看愚蠢的ivregress gmm,还需要手动estat overid,也只报告了一个Hansen J,太不人性化了!

而且xtivreg2 还可以实现双重聚类,同时聚类到截面和时间,这是对ivregress gmm的终极碾压!

3. However...

然而,即便拥有不用写截面虚拟变量的绝对优势, xtivreg2 却有一个令人难以忍受的缺点,那就是

xtivreg2 does not estimate or report a constant with the fixed effects model fe.
Source: Schaffer, M.E., 2010. xtivreg2: Stata module to perform extended IV/2SLS, GMM and AC/HAC, LIML and k-class regression for panel data models.

......What??? 竟然不报告常数项
这对于论文结果的报告简直是晴天霹雳!
你就不能把ivreg2ivregress的常数项抄过来,再自己估计个标准误吗!
希望stata有关部门能好好管管这个bug。

End

To xtivreg2 :
你已经是个成熟的命令了,该学会自己报告常数项了。

Reference

ivreg2和xtivreg2到底有啥区别

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,701评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,649评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,037评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,994评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,018评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,796评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,481评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,370评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,868评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,014评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,153评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,832评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,494评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,039评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,156评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,437评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,131评论 2 356

推荐阅读更多精彩内容