PyTorch基本用法(十)——卷积神经网络

文章作者:Tyan
博客:noahsnail.com  |  CSDN  |  简书

本文主要是关于PyTorch的一些用法。

import torch
import torchvision
import torch.nn as nn
import torch.utils.data as Data
import matplotlib.pyplot as plt
from torch.autograd import Variable

# 超参数定义
EPOCH = 1
LR = 0.01
BATCH_SIZE = 64

# 下载MNIST数据集
train_data = torchvision.datasets.MNIST(
    root = './mnist/',
    # 是否是训练数据
    train = True,
    # 数据变换(0, 255) -> (0, 1)
    transform = torchvision.transforms.ToTensor(),
    # 是否下载MNIST数据
    download = True
)

test_data = torchvision.datasets.MNIST(
    root = './mnist/',
    # 是否是训练数据
    train = False,
    # 数据变换(0, 255) -> (0, 1)
    transform = torchvision.transforms.ToTensor(),
    # 是否下载MNIST数据
    download = True
)

print train_data.train_data.size()
print train_data.train_labels.size()
print test_data.test_data.size()
print test_data.test_labels.size()
torch.Size([60000, 28, 28])
torch.Size([60000])
torch.Size([10000, 28, 28])
torch.Size([10000])
# 查看图像
plt.imshow(train_data.train_data[0].numpy(), cmap = 'gray')
plt.title('%i' % train_data.train_labels[0])
plt.show()

plt.imshow(test_data.test_data[0].numpy(), cmap = 'gray')
plt.title('%i' % test_data.test_labels[0])
plt.show()
png
png
# 数据加载
train_loader = Data.DataLoader(dataset = train_data, batch_size = BATCH_SIZE, shuffle = True, num_workers = 2)
test_loader = Data.DataLoader(dataset = test_data, batch_size = BATCH_SIZE, shuffle = False, num_workers = 1)

# 定义卷积神经网络
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Sequential(
            nn.Conv2d(
                in_channels = 1,
                out_channels = 16,
                kernel_size = 5,
                stride = 1,
                padding = 2
            ),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size = 2)
        )
        # conv1输出为(16, 14, 14)
        self.conv2 = nn.Sequential(
            nn.Conv2d(16, 32, 5, 1, 2),
            nn.ReLU(),
            nn.MaxPool2d(2)
        )
        # conv2输出为(32, 7, 7)
        self.output = nn.Linear(32 * 7 * 7, 10)
        
    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = x.view(x.size(0), -1)
        prediction = self.output(x)
        return prediction

cnn = CNN()
print cnn
CNN (
  (conv1): Sequential (
    (0): Conv2d(1, 16, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (1): ReLU ()
    (2): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
  )
  (conv2): Sequential (
    (0): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (1): ReLU ()
    (2): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
  )
  (output): Linear (1568 -> 10)
)
# 定义优化器
optimizer = torch.optim.Adam(cnn.parameters(), lr = LR, betas= (0.9, 0.999))

# 定义损失函数
loss_func = nn.CrossEntropyLoss()

# 训练
for epoch in xrange(EPOCH):
    for step, (x, y) in enumerate(train_loader):
        x_var = Variable(x)
        y_var = Variable(y)
        prediction = cnn(x_var)
        loss = loss_func(prediction, y_var)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        if step % 100 == 0:
            correct = 0.0
            for step_test, (test_x, test_y) in enumerate(test_loader):
                test_x = Variable(test_x)
                test_output = cnn(test_x)
                pred_y = torch.max(test_output, 1)[1].data.squeeze()
                correct += sum(pred_y == test_y)
            accuracy = correct / test_data.test_data.size(0)
            print 'Epoch: ', epoch, '| train loss: %.4f' % loss.data[0], '| accuracy: ', accuracy
Epoch:  0 | train loss: 2.2787 | accuracy:  0.0982
Epoch:  0 | train loss: 0.0788 | accuracy:  0.9592
Epoch:  0 | train loss: 0.0587 | accuracy:  0.9626
Epoch:  0 | train loss: 0.0188 | accuracy:  0.9745
Epoch:  0 | train loss: 0.0707 | accuracy:  0.9759
Epoch:  0 | train loss: 0.0564 | accuracy:  0.9775
Epoch:  0 | train loss: 0.0489 | accuracy:  0.9779
Epoch:  0 | train loss: 0.0925 | accuracy:  0.9791
Epoch:  0 | train loss: 0.0566 | accuracy:  0.9834

参考资料

  1. https://www.youtube.com/user/MorvanZhou
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容