使用Pytorch1.0,GPU版本
import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision
import matplotlib.pyplot as plt
import numpy as np
torch.manual_seed(1)
EPOCH = 10
BATCH_SIZE = 64
LR = 0.005
N_TEST_IMG = 5
train_data = torchvision.datasets.MNIST(
root = 'D:/dataset/mnist/',
train = True,
transform = torchvision.transforms.ToTensor(),
download = True)
# 查看一个数据例子
print(train_data.train_data.size())
print(train_data.train_labels.size())
plt.imshow(train_data.train_data[2].numpy(), cmap='gray')
plt.title('{}'.format(train_data.train_labels[2]))
plt.show()
train_dataloader = Data.DataLoader(dataset = train_data,
batch_size = BATCH_SIZE,
shuffle = True,
drop_last = True)
class autoEncoder(nn.Module):
def __init__(self):
super(autoEncoder, self).__init__()
self.encoder = nn.Sequential(nn.Linear(28*28, 128),
nn.Tanh(),
nn.Linear(128, 64),
nn.Tanh(),
nn.Linear(64, 12),
nn.Tanh(),
nn.Linear(12, 3))
self.decoder = nn.Sequential(nn.Linear(3, 12),
nn.Tanh(),
nn.Linear(12, 64),
nn.Tanh(),
nn.Linear(64, 128),
nn.Tanh(),
nn.Linear(128, 28*28),
nn.Sigmoid())
def forward(self, x):
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return encoded, decoded
model = autoEncoder()
optimizer = torch.optim.Adam(model.parameters(), lr=LR)
loss_func = nn.MSELoss()
# 显示前5张图
f, a = plt.subplots(2, N_TEST_IMG, figsize=(5,2)) #返回figure和axes
plt.ion()
view_data = train_data.train_data[:N_TEST_IMG].view(-1, 28*28).type(torch.FloatTensor)/255.
for i in range(N_TEST_IMG):
a[0][i].imshow(np.reshape(view_data.numpy()[i], (28,28)), cmap='gray')
a[0][i].set_xticks(())
a[0][i].set_yticks(())
# 训练
use_cuda = torch.cuda.is_available()
device = torch.device('cuda') if use_cuda else torch.device('cpu')
model = model.to(device)
for epoch in range(EPOCH):
for step, (x, y) in enumerate(train_dataloader):
b_x = x.view(-1, 28*28).requires_grad_().to(device)
b_y = x.view(-1, 28*28).requires_grad_().to(device)
y = y.type(torch.FloatTensor)
b_label = y.requires_grad_().to(device)
optimizer.zero_grad()
encoded, decoded = model(b_x)
loss = loss_func(decoded, b_y)
loss.backward()
optimizer.step()
if step % 100 == 0:
print('Epoch: {} | train loss: {:.4f}'.format(epoch+1, loss.item()))
#输出解码后的5张图
encoded_data, decoded_data = model(view_data.to(device))
for i in range(N_TEST_IMG):
a[1][i].clear()
a[1][i].imshow(np.reshape(decoded_data.detach().to(torch.device('cpu')).numpy()[i], (28,28)), cmap='gray')
a[1][i].set_xticks(())
a[1][i].set_yticks(())
plt.draw()
plt.pause(0.1)
plt.ioff()
plt.show()