Python变形

1.长宽表的变形

什么是长表?什么是宽表?这个概念是对于某一个特征而言的。例如:一个表中把性别存储在某一个列中, 那么它就是关于性别的长表;如果把性别作为列名,列中的元素是某一其他的相关特征数值,那么这个表是 关于性别的宽表。

1.1 pivot

pivot 是一种典型的长表变宽表的函数。对于一个基本的长变宽的操作而言,最重要的有三个要素,分别是变形后的行索引、需要转到列索引的列, 以及这些列和行索引对应的数值,它们分别对应了 pivot 方法中的 index, columns, values 参数。新生成表的 列索引是 columns 对应列的 unique 值,而新表的行索引是 index 对应列的 unique 值,而 values 对应了想 要展示的数值列。

利用 pivot 进行变形操作需要满足唯一性的要求,即由于在新表中的行列索引对应了唯一的 value ,因此原 表中的 index 和 columns 对应两个列的行组合必须唯一。例如,现在把原表中第二行张三的数学改为语文就 会报错,这是由于 Name 与 Subject 的组合中两次出现 (”San Zhang”, ”Chinese”) ,从而最后不能够确定到 底变形后应该是填写 80 分还是 75 分。

pandas 从 1.1.0 开始,pivot 相关的三个参数允许被设置为列表,这也意味着会返回多级索引。这里构造一 个相应的例子来说明如何使用:下表中六列分别为班级、姓名、测试类型(期中考试和期末考试)、科目、成 绩、排名。

根据唯一性原则,新表的行索引等价于对 index 中的多列使用 drop_duplicates ,而列索引的长度为 values 中的元素个数乘以 columns 的唯一组合数量(与 index 类似)。

1.2 pivot_table

pivot 的使用依赖于唯一性条件,那如果不满足唯一性条件,那么必须通过聚合操作使得相同行列组合对应 的多个值变为一个值。例如,张三和李四都参加了两次语文考试和数学考试,按照学院规定,最后的成绩是 两次考试分数的平均值,此时就无法通过 pivot 函数来完成。

1.3 melt

长宽表只是数据呈现方式的差异,但其包含的信息量是等价的,前面提到了利用 pivot 把长表转为宽表,那 么就可以通过相应的逆操作把宽表转为长表,melt 函数就起到了这样的作用。

1.4 wide_to_long

melt 方法中,在列索引中被压缩的一组值对应的列元素只能代表同一层次的含义,即 values_name 。现在 如果列中包含了交叉类别,比如期中期末的类别和语文数学的类别,那么想要把 values_name 对应的 Grade 扩充为两列分别对应语文分数和数学分数,只把期中期末的信息压缩,这种需求下就要使用 wide_to_long 函数来完成。

2 索引的变形

2.1 stack 与 unstack

unstack 函数的作用是把行索引转为列索引

unstack 的主要参数是移动的层号,默认转化最内层,移动到列索引的最内层,同时支持同时转化多个层

类似于 pivot 中的唯一性要求,在 unstack 中必须保证 被转为列索引的行索引层和 被保留的行索引层构成 的组合是唯一的,例如把前两个列索引改成相同的破坏唯一性,那么就会报错

与 unstack 相反,stack 的作用就是把列索引的层压入行索引,其用法完全类似。

2.2 聚合与变形的关系

在上面介绍的所有函数中,除了带有聚合效果的 pivot_table 以外,所有的函数在变形前后并不会带来 values 个数的改变,只是这些值在呈现的形式上发生了变化。在上一章讨论的分组聚合操作,由于生成了新的行列 索引,因此必然也属于某种特殊的变形操作,但由于聚合之后把原来的多个值变为了一个值,因此 values 的 个数产生了变化,这也是分组聚合与变形函数的最大区别。

3 其他变形函数

3.1 crosstab

crosstab 并不是一个值得推荐使用的函数,因为它能实现的所有功能 pivot_table 都能完成,并且速度更快。 在默认状态下,crosstab 可以统计元素组合出现的频数,即 count 操作。例如统计 learn_pandas 数据集中 学校和转系情况对应的频数

3.2 explode

explode 参数能够对某一列的元素进行纵向的展开,被展开的单元格必须存储 list, tuple, Series, np.ndarray 中的一种类型。

3.3 get_dummies

get_dummies 是用于特征构建的重要函数之一,其作用是把类别特征转为指示变量。例如,对年级一列转为 指示变量,属于某一个年级的对应列标记为 1,否则为 0





©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,616评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,020评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,078评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,040评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,154评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,265评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,298评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,072评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,491评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,795评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,970评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,654评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,272评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,985评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,815评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,852评论 2 351

推荐阅读更多精彩内容