Vital nodes identification in complex networks-笔记

Vital nodes identification in complex networks

作者:Linyuan Lü, Duanbing Chen, Xiao-Long Ren, Qian-Ming Zhang,

abstract

The vital nodes identification

1. Introduction

network science

Recently, the focus of network science has been shifting from discovering macroscopic statistical regularities to unfolding mesoscopic structural organization.

the roles of different nodes in the structure and function of a network
may be largely different.

To identify vital nodes is not a trivial task.

  • Firstly, criteria of vital nodes are diverse.
  • Secondly, to find a nice tradeoff between local and global indices or between parameter-free and multi-parameter indices is a challenge.
  • Thirdly, most known methods were essentially designed for identify individual vital nodes instead of a set of vital nodes, while the latter is more relevant to real applications.
  • Lastly, to design efficient and effective methods for some new types of networks, is a novel task in this research domain.

Motivation for writing this review :

  • Firstly, it lacks a systematic review in this direction.
  • Secondly, we intend to make extensive empirical comparisons with well-known methods on disparate real networks under different objective functions.
  • Thirdly, we carefully choose the language that can be easily accepted by both computer scientists and physicists.
  • Fourthly, we would like to highlight some open challenges for future studies in this domain.

2. Structural centralities

structural centralities
-->neighborhood-based centralities
-->path-based centralities

centrality
The concept centrality was just proposed to answer the question that how to characterize a node’s importance according to the structure .
structural centralities can be obtained based solely on structural information.
importance

A node’s influence is highly correlated to its capacity to impact the behaviors of its surrounding neighbors.

How to compute the degree centrality?

  • directly count the number of a node’s immediate neighbors
  • LocalRank algorithm
  • ClusterRank
  • k-core decomposition
  • H-index

result: the degree centrality, H-index and coreness can be considered as the initial, intermediate and steady states of a sequence driven by an discrete operator

From the viewpoint of information dissemination, the node who has the potential to spread the information faster and vaster is more vital

  • eccentricity centrality
  • closeness centrality
  • betweenness centrality
  • Katz centrality

2.1. Neighborhood-based centralities

2.1.1. Degree centrality

Degree centrality is the simplest index to identify nodes’ influences: the more connections a node has, the greater the influence of the node gets.
$DC(i) =\frac{k^i}{n-1}$
where $ n = |V|$ is the number of nodes in G and $n-1$ is the largest possible degree.

2.1.2. LocalRank

Chen et al. proposed an effective local-information-based algorithm: LocalRank, which fully considers the information contained in the fourth-order neighbors of each node.

LR(i) =\sum_{j\in\Gamma_i}Q(j)
Q(j) =\sum_{k\in\Gamma_j}R(k)

where $\Gamma_i$ is the set of the nearest neighbors of $v_i$ and $R(k)$ is the number of the nearest and the next nearest neighbors of $v_k$.

The computational complexity : $O(n(k)^2)$

2.1.3. ClusterRank

ClusterRank not only considers the number of the nearest neighbors, but also takes into account the interactions among them.

ClusterRank is defined in directed networks,

CR(i) = f(c_i)\sum_{j\in\Gamma_i}(k_j^{out}+1)

where $f (c_i)$ is a function of the clustering coefficient $ c_i $ of the node $v_i$ in the directed network D, which is defined as

c_i = \frac{|{(j\rightarrow k)|j,k\in \Gamma^{out}_i}|}{k^{out}_i(k^{out}_i-1)}

where $k^{out}_i $ is the out-degree of $ v_i$ and $\Gamma^{out}_i $ is the set of the nearest out-neighbors of $v_i$.

other factors:

  • the number of communities the node connects with
  • structural holes.

2.1.4. Coreness

the location of a node is more significant than its immediate neighbors in evaluating its spreading influence. Coreness as a better indicator for a node’s spreading influence, which can be obtained by using the k-core decomposition in networks.

k-core decomposition

Given an undirected simple network G, initially, the coreness $ci $of every isolated node $ v_i (i.e., k_i = 0)$ is defined as $c_i = 0$ and these nodes are removed before the k-core decomposition.

Then in the first step of k-core decomposition, all the nodes with degree k = 1 will be removed. This will cause a reduction of the degree values to the remaining nodes. Continually remove all the nodes whose residual degree k $\leq$ 1, until all the remaining nodes’ residual degrees k > 1. All the removed nodes in the first step of the decomposition form the 1-shell and their coreness ks are all equal to 1.

In the second step, all the remaining nodes whose degrees k = 2 will be removed in the first place. Then iteratively remove all the nodes whose residual degrees k $\leq$2 until all the remaining nodes’ whose residual degrees k > 2. The removed nodes in the second step of the decomposition form the 2-shell and their coreness ks are two.

The decomposition process will continue until all the nodes are removed. At last, the coreness of a node $v_i$ equals its corresponding shell layer.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,053评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,527评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,779评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,685评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,699评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,609评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,989评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,654评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,890评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,634评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,716评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,394评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,976评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,950评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,191评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,849评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,458评论 2 342

推荐阅读更多精彩内容

  • 不知不觉打炉石3年了,炉石陪我走过大学生涯里很长的一段路。在大一的那个寒假里,游戏迷表哥强力推荐给我这款游戏,作为...
    枫潇寒阅读 835评论 3 5
  • 邂逅每一件衣服 都想趕赴一場未知的愛情 有時候 你動心了 他卻不合適 有時候 他合適了 你卻不動心 幸運的...
    YuEraIJiNgyI阅读 372评论 0 1
  • 当我对一件事有排斥感的时候,是很难在平常完成它,基本都是在最后期限的到来的最后几分钟完成。这可以想象它的质量...
    董文娇阅读 152评论 0 0