Probability&Statistics#3

本文图片引用浙江大学 概率论与数理统计
MOOC课程课件

全概率公式与贝叶斯公式

样本划分定义


image.png

全概率公式定义,如图,计算圆圈A的发生概率。


image.png

如果转化成条件概率,那么就是已知A发生,那Bi发生的概率计算,即为贝叶斯Bayes公式。
分母为A发生概率,分子为Bi发生概率。

image.png

一个医学案列,计算全人口普查,我们计算事件P(C|A)即测试结果为阳性,且真实患癌症的可能性多大?
image.png

image.png

事件独立性

注意与条件概率不同,条件概率事件A的发生会对B的发生产生影响,P(B|A)≠PB。而此时A,B的发生互不影响。

image.png

[图片上传失败...(image-2c75a7-1617419539793)]
注意!
image.png

image.png

image.png
image.png

换句话说,如果AB同时发生了,就是抽到了124,那C的发生一定是100%,AB的发生对C产生了影响,所以不独立。
以下可以立即为1AB不认识,决定互不干扰。2AB水火不容,没有交集。3A掌控B。4AB有商量。


image.png

小概率事件

image.png

image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,445评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,889评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,047评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,760评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,745评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,638评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,011评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,669评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,923评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,655评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,740评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,406评论 4 320
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,995评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,961评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,023评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,483评论 2 342

推荐阅读更多精彩内容

  • 一 条件概率:设A、B是两个事件,在A事件发生的条件下,B事件发生的概率,其中P(A)>0。说明A事件发生的概率大...
    zimlink阅读 15,532评论 0 5
  • 概念:如果一个事件的结果不影响另一事件的结果,那么这两个事件是独立事件。反之,这两个事件称为非独立事件。两个事件如...
    stevenrao阅读 2,602评论 0 1
  • 基本公式 全概率公式:设试验E的样本空间为S,A为E的事件,B1,B2,...,Bn为S的一个划分,并且P(Bi)...
    iAstrolien阅读 1,906评论 0 3
  • 引子 【基础知识】:条件概率----设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概...
    烨枫_邱阅读 4,752评论 0 2
  • 目前网络上流传着无数版本的人工智能入门书单,无一例外的都需要学习数学。对于很多毕业多年的程序猿(媛)来说,再次复习...
    岁与禾阅读 346评论 0 1