目标跟踪检测算法(二)——检测与跟踪

姓名:刘帆;学号:20021210609;学院:电子工程学院

转载于:

https://blog.csdn.net/qq_34919792/article/details/89893249

【嵌牛导读】目标跟踪算法后,目标检测算法出现,将两者相结合的算法成为新的研究方向。

【嵌牛鼻子】目标跟踪检测算法,机器学习

【嵌牛提问】什么是跟踪检测算法?最基础的算法包括哪些?

【嵌牛正文】

第二阶段(2010年~2012年,检测与跟踪相结合的方法出现)

在该阶段,对已存的目标追踪算法出现了两种比较公认的分类,一种是基于生成模型的方法,一种是基于判别模型的方法。在第一阶段中的方法都属于前一种,而基于判别的方法是指通过分类来做跟踪,也叫检测跟踪(Tracking-by-Detection)。

通过机器学习方法,提取图像特征,并训练分类器进行分类,在下一帧用训练好的分类器找到最优区域。该阶段,经典的判别类方法有Struck和TLD。

1、Struck

《Struck:Structured Output Tracking with Kernels》是Sam Hare, Amir Saffari, Philip H.S.Torr等人于2011年发表在Computer Vision (ICCV)上的一篇文章。Struck算法(下图左手边)主要提出一种基于结构输出预测的自适应视觉目标跟踪的框架,通过明确引入输出空间满足跟踪功能,能够避免中间分类环节,直接输出跟踪结果。同时,为了保证实时性,该算法还引入了阈值机制,防止跟踪过程中支持向量的过增长。

与传统方法不同,其新思路在于:

1)试图通过学习一个分类器来从局部背景中区分出目标对象。

2)使用在线结构输出SVM学习方法来解决跟踪问题,提出学习一个预测函数来直接估计帧之间的变化。

3)在需要添加一个新的支持向量时,支持向量的数目已经达到阈值,则就需要移除一个合适的支持向量,并潜在地调整仍存在的支持向量的系数以弥补移除的损失。

2、TLD

Tracking-Learning-Detection(TLD)是Zdenek Kalal提出的一种对视频中单个物体长时间跟踪的算法。我主要会根据他在2010年发表的论文《Tracking-Learning-Detection》来分析TLD算法的原理。

正如名字所示,TLD算法主要由三个模块构成:追踪器(tracker),检测器(detector)和机器学习(learning)。作者提出把追踪器和检测器结合使用,同时加入机器学习来提高结果的准确度。

追踪器的作用是跟踪连续帧间的运动,当物体始终可见时跟踪器才会有效。追踪器根据物体在前一帧已知的位置估计在当前帧的位置,这样就会产生一条物体运动的轨迹,从这条轨迹可以为学习模块产生正样本(Tracking->Learning)。

检测器的作用是估计追踪器的误差,如果误差很大就改正追踪器的结果。检测器对每一帧图像都做全面的扫描,找到与目标物体相似的所有外观的位置,从检测产生的结果中产生正样本和负样本,交给学习模块(Detection->Learning)。算法从所有正样本中选出一个最可信的位置作为这一帧TLD的输出结果,然后用这个结果更新追踪器的起始位置(Detection->Tracking)。

学习模块根据追踪器和检测器产生的正负样本,迭代训练分类器,改善检测器的精度(Learning->Detection)。

追踪模块是作者所提出的Median-FLow,是光流的一种改进。首先在上一帧t的物体包围框里均匀地产生一些点,然后用Lucas-Kanade追踪器正向追踪这些点到t+1帧,再反向追踪到t帧,计算FB误差,筛选出FB误差最小的一半点作为最佳追踪点。最后根据这些点的坐标变化和距离的变化计算t+1帧包围框的位置和大小。

学习模块是提供了P-N学习一种半监督学习方式。

P专家(P-expert):检出漏检(false negative,正样本误分为负样本)的正样本,其作用是寻找数据在时间上的结构性,它利用追踪器的结果预测物体在t+1帧的位置。如果这个位置(包围框)被检测器分类为负,P专家就把这个位置改为正。也就是说P专家要保证物体在连续帧上出现的位置可以构成连续的轨迹;

N专家(N-expert):改正误检(false positive,负样本误分为正样本)的正样本其作用是寻找数据在空间上的结构性,它把检测器产生的和P专家产生的所有正样本进行比较,选择出一个最可信的位置,保证物体最多只出现在一个位置上,把这个位置作为TLD算法的追踪结果。同时这个位置也用来重新初始化追踪器。

检测模块是级联分类器,包含三个类别。第一个图元方差分类器,通过方差比较排除一半以上的样本。第二个集成分类器,通过随机蕨来提供一个分类准则,排除概率低的样本。第三个是最近邻分类器,计算新样本的相对相似度,取相似度高的为检测样本。

TLD的工作流程如上图所示。首先,检测器由一系列包围框产生样本,经过级联分类器产生正样本,放入样本集;然后使用追踪器估计出物体的新位置,P专家根据这个位置又产生正样本,N专家从这些正样本里选出一个最可信的,同时把其他正样本标记为负;最后用正样本更新检测器的分类器参数,并确定下一帧物体包围框的位置。

参考链接

Struck跟踪原理:https://blog.csdn.net/App_12062011/article/details/52220566

SVM参考:https://blog.csdn.net/v_july_v/article/details/7624837

TLD原理:http://johnhany.net/2014/05/tld-the-theory/

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 221,273评论 6 515
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,349评论 3 398
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 167,709评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,520评论 1 296
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,515评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,158评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,755评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,660评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,203评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,287评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,427评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,122评论 5 349
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,801评论 3 333
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,272评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,393评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,808评论 3 376
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,440评论 2 359

推荐阅读更多精彩内容