【白话数据分析】聊聊“标准差”在数分中的应用

00 写在前面

很久没有更新文章了,很多粉丝也在不断地催更,之所以一直没有更新,一方面不想因为更新而更新,这样出来的内容质量也不高,另一方面,我公众号的文章都是按照系列更新的,并不是零散的知识点,这样更便于大家系统地查看,如果大家有看过,应该注意到,到目前为止,我已经更新了【初识数据分析】、【数据分析思维】、【数据分析工具】、【数据分析统计学】、【数据分析面试宝典】、【机器学习】等6个系列,所以我也一直在思考,接下来和大家聊一聊哪些话题、写哪个系列。

不知道大家有没有类似的经历?有没有曾经因为追求高端的算法和工具而没有及时交付最终的业务结果,最后被老板一通批评;有没有拿着一个单点的数据分析结果就给出了一个全面的结论和建议;有没有给过一些因果倒置或者“幸存者偏差”的结论,导致业务走了弯路。

这些经历大家多多少少都会遇到,为什么会犯这些错误?因为我们缺乏了一些基本的数据分析思维。刚好最近一直在拜读郭炜的【数据分析思维课】,讲地很好,内容深入浅出,很接地气。我们很多人缺乏的不是数据分析的理论,而是在实际场景中应用理论的能力,理论+实际场景=方法论,如何把看似浮在空中的理论落地到实际的工作场景中来,就需要通过简单易懂的案例和近似白话的语言传达出来,这也是为什么会有【白话数据分析】这个系列的原因。无论你是什么阶段什么水平,我们从生活/工作中最常见的案例出发,用最直白的文字把理论讲清楚,真正掌握数据分析的基本思维和原理,这也是写这个系列文章的初衷。

因为是白话,所以在这个系列文章中,没有晦涩难懂的公式和复杂的程序,我只是希望用大白话的形式,结合工作和生活中的各种各样的例子,学会怎样从数据分析的角度来解决这些问题,掌握一些数据分析最基本的知识。放我们再看待同一件事情的时候,思路和以前不一样了,可以从数据的角度来诠释身边发生的事情,用数据的思维来做出你的判断。


01 举个栗子

作为数据分析师,标准差(Standard Deviation)是我们最熟悉的概念之一,它是描述数据分布形态和离散程度的重要指标之一。在本文中,我将从多个角度来解析标准差,包括其定义、作用、应用场景等,并且通过实际案例来阐述其在数据分析中的重要性。

1.1 什么是标准差?

标准差是衡量一组数据变化程度的统计量,其实质是用来描述数据的分散程度。标准差越大,表示数据越分散;标准差越小,表示数据越集中。标准差是样本或总体内所有数据与平均值之间距离的平均值。简单来说,标准差是衡量一组数据相对于平均值的分散程度。

1.2 标准差的作用

标准差在数据分析中有多个重要作用:

1.2.1 描述数据分布的形态

标准差可以帮助我们判断数据的分布形态。当标准差较小时,数据集中在平均值附近,分布形态比较集中;而当标准差较大时,数据相对于平均值更为分散,分布形态比较散。通过标准差,我们可以大致了解数据的形态,进而选择适当的分析方法。

1.2.2 衡量数据的离散程度

标准差可以衡量一组数据的离散程度,进而判断数据的稳定性。标准差越小,表示数据的离散程度越小,数据变化越稳定;标准差越大,表示数据的离散程度越大,数据变化越不稳定。通过标准差,我们可以判断数据的稳定性,从而确定相应的风险控制策略。

1.2.3 标准差与均值的关系

标准差与均值有着密切的关系。当数据分布集中时,标准差较小,均值较准确;而当数据分布较分散时,标准差较大,均值较不准确。在数据分析中,我们需要综合考虑标准差和均值来判断数据的可靠性和准确性。


02 数据分析案例

案例:网站用户访问量分析 假设某互联网公司要分析其网站的用户访问量,以便确定运营方案。公司首先收集了一个月的用户访问数据,共计30天。我们可以通过计算标准差来判断用户访问量的稳定性。

首先,我们将用户访问量按照日期进行排列,然后计算平均值。如下表所示:

日期 访问量

1 500

2 550

3 480

... ...

30 520

平均值 = (500 + 550 + 480 + ... + 520) / 30 = 510

接下来,我们计算每天的访问量与平均值的差值,并对其进行平方。如下表所示:

日期 访问量 平均值 差值 平方差

1 500 510 -10 100

2 550 510 40 1600

3 480 510 -30 900

... ... ... ... ...

30 520 510 10 100

然后,我们将平方差的和除以总天数,再将结果开根号,即可得到标准差。如下所示:

标准差 = √(100 + 1600 + 900 + ... + 100) / 30 = 31.62

通过计算标准差,我们可以判断用户访问量的稳定程度。如果标准差较小,说明用户访问量相对稳定,我们可以采取较为稳定的运营方案;如果标准差较大,说明用户访问量波动较大,我们需要考虑更为灵活的运营方案。


03 标准差的使用场景

3.1 确定数据的可靠性

在数据分析过程中,我们经常需要判断数据的可靠性。标准差是判断数据是否稳定的重要指标之一,如果标准差较小,说明数据较为稳定,我们可以相对放心地使用数据;如果标准差较大,说明数据波动较大,我们需要考虑数据的可靠性,以免影响分析结果的准确性。

3.2 判断数据是否异常

在数据分析过程中,我们还需要判断数据是否存在异常值。如果某个数据的值远远超过其他数据,可能是因为数据录入错误或数据本身存在问题。我们可以通过计算标准差来判断数据是否异常,如果某个数据的值超过平均值2-3倍的标准差,我们可以将其判断为异常值。

3.3 优化数据采样方案

在进行数据分析时,我们经常需要对数据进行采样,以便快速地得出结论。然而,采样本身也可能会带来误差,因此我们需要优化采样方案,以减小误差。标准差可以帮助我们衡量采样误差的大小,如果标准差较小,说明采样误差较小,我们可以使用较小的样本量得到较为准确的结论;如果标准差较大,说明采样误差较大,我们需要采集更多的样本数据,以减小误差。


04 总结

标准差是数据分析中非常重要的指标,可以描述数据分布的形态,衡量数据的离散程度,同时与均值密切相关。在数据分析过程中,我们可以通过计算标准差来判断数据的稳定性和可靠性,判断数据是否存在异常值,以及优化数据采样方案。因此,我们需要深入理解标准差的概念和计算方法,并在实践中灵活运用,以提高数据分析的准确性和效率。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,163评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,301评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,089评论 0 352
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,093评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,110评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,079评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,005评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,840评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,278评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,497评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,667评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,394评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,980评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,628评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,649评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,548评论 2 352

推荐阅读更多精彩内容