如何选择合适的机器学习算法

影响因素


数据的大小、质量及性质

可用计算时间

任务的急迫性

数据的使用用途


机器学习算法速查表(精确性、训练时间和易用性)(熟悉度)

监督学习

监督学习算法基于一组样本对作出预测。例如,以往销售业绩可以用来预测未来的价格走势。借助监督学习,我们会有一组由标注训练数据组成的输入变量和一组希望预测的输出变量。我们可以使用算法分析训练数据来学习一个将输入映射到输出的函数。算法推断的函数可通过概括训练数据预测未知情景中的结果进而预测未知的新实例。

分类:当数据被用于预测类别时,监督学习也可处理这类分类任务。给一张图片贴上猫或狗的标签就是这种情况。当分类标签只有两个时,这就是二元分类;超过两个则是多元分类。

回归:当预测为连续数值型时,这就是一个回归问题。

预测:这是一个基于过去和现在的数据预测未来的过程,其最大应用是趋势分析。一个典型实例是根据今年和前年的销售业绩以预测下一年的销售业绩。

半监督学习

监督学习的主要挑战是标注数据价格昂贵且非常耗时。如果标签有限,你可以使用非标注数据来提高监督学习。由于在这一情况中机器并非完全有监督,所以称之为半监督。通过半监督学习,你可以使用只包含少量标注数据的非标注实例提升学习精确度。

无监督学习

在无监督学习之中,机器完全采用非标注数据,其被要求发现隐藏在数据之下的内在模式,比如聚类结构、低维流形或者稀疏树和图。

聚类:把一组数据实例归为一类,从而一个类(一个集群)之中的实例与其他类之中的实例更相似(根据一些指标),其经常被用于把整个数据集分割为若干个类。这种分析可在每一分类之中进行,从而帮助用户需要内在模式。

降维:减少考虑的变量数量。在很多应用中,原始数据有非常高的特征维度,并且一些特征是多余的且与任务不相关。降维将有助于发现真实、潜在的关系。

强化学习

基于来自环境的反馈,强化学习分析和优化智能体的行为。机器尝试不同的策略,从而发现哪种行为能产生最大的回报,因此智能体不是被告知应该采取哪种行为。试错和延迟的 reward 是将强化学习与其他技术区分的特点。

mp.weixin.qq.com/s/E9E6chw7vTnQcdwRImMV9g

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,530评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,403评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,120评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,770评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,758评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,649评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,021评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,675评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,931评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,751评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,410评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,004评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,969评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,042评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,493评论 2 343

推荐阅读更多精彩内容