2020-04-19 纸片 07

论文纸片盒子 07

Machine Learning for Fluid Mechanics

abstract

  1. 分析了流体力学领域中机器学习应用的历史、现状、存在的机遇。
  2. 归纳了机器学习的主要方法及其优势和局限性。
  3. 机器学习方法的引入,扩宽了流体力学研究的边界以及工业应用。

introduction

historical overview

challenges and opportunities for machine learning in fluid dynamics

  1. 流体力学与图像识别、广告推荐等不同,流体力学领域重视对于具体现象的潜在物理机制的量化分析。
  2. 流体力学领域问题通常具有非线性、多时空尺度的特征。
  3. 流体力学领域试验通常难以重复,模拟通常需要大型计算机长时间运行。

machine learning fundamentals

image

supervised learning

neural networks

classification: support vector machines and random forests

unsupervised learning

dimensionality reduction I: POD, PCA and auto-encoders

dimensionality reduction II: Discrete principal curves and self-organizing maps

clustering and vector quantization

Semi-supervised learning

generative adaptive adversarial networks(GAN)

reinforcement learning

stochastic optimization: a learning algorithms perspective

important topic we have not covered: bayesian inference, gaussian processes

flow modeling with machine learning

  1. 机器学习在流体力学领域的两个方向:1. 维度降低(dimensionality reduction);2. 降阶建模(reduced-order modeling)
  2. 流体力学领域机器学习建模分类:1. 通过提取流体特征建立运动学模型;2. 通过利用各种学习框架建立动力学模型

flow feature extraction

模式识别和数据挖掘是机器学习的核心优势。

dimensionality reduction: linear and nonliear embeddings

clustering and classification

sparse and randomized methods

super resolution and flow cleansing

modeling flow dynamics

计算模型的关键目标之一在于平衡效率和准确性。

linear models through nonliear embeddings: DMD and Koopman analysis

neural network modeling

parsimonious nonliear models

closure models with machine learning

challenges of machine learning for dynamical systems

flow optimization and control using machine learning

stochastic flow optimization: learning probability distributions

flow control with machine learning

neural networks for control

genetic algorithms for control

flow control via reinforcement learning

image

discussion and outlook

summary points

future issues

©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容