风控(五)——基于决策树规则挖掘油品贷案例

本数据为滴滴司机使用油品贷的数据。
油品贷的坏账率高达5%,非常高,一定是会赔钱的。并且能够通过欺诈检测。
来申请油品贷的司机本身是已经有A卡了,A卡评级为A-F。本来是只有F不放款,但是在油品贷上只有评级为A放款才能不亏钱。
滴滴是和很多加油站有合作的,加油站会给滴滴提供司机数据。
导入包

import pandas as pd
import numpy as np

#显示全部特征
pd.set_option('display.max_columns', None)

导入数据

data = pd.read_excel('oil_data_for_tree.xlsx')
data.head()

org_lst 不需要做特殊变换,直接去重
agg_lst 数值型变量做聚合
dstc_lst 文本型变量做cnt

org_lst = ['uid','create_dt','oil_actv_dt','class_new','bad_ind']
agg_lst = ['oil_amount','discount_amount','sale_amount','amount','pay_amount','coupon_amount','payment_coupon_amount']
dstc_lst = ['channel_code','oil_code','scene','source_app','call_source']

数据重组

df = data[org_lst].copy()
df[agg_lst] = data[agg_lst].copy()
df[dstc_lst] = data[dstc_lst].copy()

看一下缺失情况

df.isna().mean()

看一下基础变量的describe

df.describe()

对creat_dt做补全,用oil_actv_dt来填补,并且截取6个月的数据。
构造变量的时候不能直接对历史所有数据做累加。
否则随着时间推移,变量分布会有很大的变化。

def time_isna(x,y):
    if str(x) == 'NaT':
        x = y
    else:
        x = x
    return x
df2 = df.sort_values(['uid','create_dt'],ascending = False)
df2['create_dt'] = df2.apply(lambda x: time_isna(x.create_dt,x.oil_actv_dt),axis = 1)
df2['dtn'] = (df2.oil_actv_dt - df2.create_dt).apply(lambda x :x.days)
df = df2[df2['dtn']<180]
df.head()

对org_list变量求历史贷款天数的最大间隔,并且去重

base = df[org_lst]
base['dtn'] = df['dtn']
base = base.sort_values(['uid','create_dt'],ascending = False)
base = base.drop_duplicates(['uid'],keep = 'first')
base.shape

维度(11099, 6)
做变量衍生

gn = pd.DataFrame()
for i in agg_lst:
    tp = pd.DataFrame(df.groupby('uid').apply(lambda df:len(df[i])).reset_index())
    tp.columns = ['uid',i + '_cnt']
    if gn.empty == True:
        gn = tp
    else:
        gn = pd.merge(gn,tp,on = 'uid',how = 'left')
    tp = pd.DataFrame(df.groupby('uid').apply(lambda df:np.where(df[i]>0,1,0).sum()).reset_index())
    tp.columns = ['uid',i + '_num']
    if gn.empty == True:
        gn = tp
    else:
        gn = pd.merge(gn,tp,on = 'uid',how = 'left')
    tp = pd.DataFrame(df.groupby('uid').apply(lambda df:np.nansum(df[i])).reset_index())
    tp.columns = ['uid',i + '_tot']
    if gn.empty == True:
        gn = tp
    else:
        gn = pd.merge(gn,tp,on = 'uid',how = 'left')
    tp = pd.DataFrame(df.groupby('uid').apply(lambda df:np.nanmean(df[i])).reset_index())
    tp.columns = ['uid',i + '_avg']
    if gn.empty == True:
        gn = tp
    else:
        gn = pd.merge(gn,tp,on = 'uid',how = 'left')
    tp = pd.DataFrame(df.groupby('uid').apply(lambda df:np.nanmax(df[i])).reset_index())
    tp.columns = ['uid',i + '_max']
    if gn.empty == True:
        gn = tp
    else:
        gn = pd.merge(gn,tp,on = 'uid',how = 'left')
    tp = pd.DataFrame(df.groupby('uid').apply(lambda df:np.nanmin(df[i])).reset_index())
    tp.columns = ['uid',i + '_min']
    if gn.empty == True:
        gn = tp
    else:
        gn = pd.merge(gn,tp,on = 'uid',how = 'left')
    tp = pd.DataFrame(df.groupby('uid').apply(lambda df:np.nanvar(df[i])).reset_index())
    tp.columns = ['uid',i + '_var']
    if gn.empty == True:
        gn = tp
    else:
        gn = pd.merge(gn,tp,on = 'uid',how = 'left')
    tp = pd.DataFrame(df.groupby('uid').apply(lambda df:np.nanmax(df[i]) -np.nanmin(df[i]) ).reset_index())
    tp.columns = ['uid',i + '_var']
    if gn.empty == True:
        gn = tp
    else:
        gn = pd.merge(gn,tp,on = 'uid',how = 'left')
    tp = pd.DataFrame(df.groupby('uid').apply(lambda df:np.nanmean(df[i])/max(np.nanvar(df[i]),1)).reset_index())
    tp.columns = ['uid',i + '_var']
    if gn.empty == True:
        gn = tp
    else:
        gn = pd.merge(gn,tp,on = 'uid',how = 'left')

对dstc_lst变量求distinct个数

gc = pd.DataFrame()
for i in dstc_lst:
    tp = pd.DataFrame(df.groupby('uid').apply(lambda df: len(set(df[i]))).reset_index())
    tp.columns = ['uid',i + '_dstc']
    if gc.empty == True:
        gc = tp
    else:
        gc = pd.merge(gc,tp,on = 'uid',how = 'left')

将变量组合在一起

fn = pd.merge(base,gn,on= 'uid')
fn = pd.merge(fn,gc,on= 'uid') 
fn.shape

维度(11099, 74)

fn = fn.fillna(0)
fn.head(100)

训练决策树模型

x = fn.drop(['uid','oil_actv_dt','create_dt','bad_ind','class_new'],axis = 1)
y = fn.bad_ind.copy()
from sklearn import tree

dtree = tree.DecisionTreeRegressor(max_depth = 2,min_samples_leaf = 500,min_samples_split = 5000)
dtree = dtree.fit(x,y)

输出决策树图像,并作出决策

import pydotplus 
from IPython.display import Image
from sklearn.externals.six import StringIO
import os
os.environ["PATH"] += os.pathsep + 'C:/Program Files (x86)/Graphviz2.38/bin/'
with open(path + "dt.dot", "w") as f:
    tree.export_graphviz(dtree, out_file=f)
dot_data = StringIO()
tree.export_graphviz(dtree, out_file=dot_data,
                         feature_names=x.columns,
                         class_names=['bad_ind'],
                         filled=True, rounded=True,
                         special_characters=True)
graph = pydotplus.graph_from_dot_data(dot_data.getvalue()) 
Image(graph.create_png())

通过加入两条规则,我们最终可以将坏客户率控制在1.2%。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,402评论 6 499
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,377评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,483评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,165评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,176评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,146评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,032评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,896评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,311评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,536评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,696评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,413评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,008评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,815评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,698评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,592评论 2 353

推荐阅读更多精彩内容