线代基本概念2--线性方程组

线性组合、线性表出、向量组等价、线性相关、线性无关、向量组的秩、极大线性无关组

线性组合

    解决作用:在“解线性方程组、求逆阵、矩阵理论探索”起作用  

    定义:线性组合是一个线性代数中的概念,代表一些抽象的向量各自乘上一个标量后再相加。

线性表出

矩阵等价:两个矩阵A,B等价表示,A可经过有限次初等变换变成B

向量组等价:向量组等价表示,两个向量组可以相互表出。

线性相关与线性无关

        在线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关或线性独立(linearly independent),反之称为线性相关(linearly dependent)。例如在三维欧几里得空间R的三个矢量(1, 0, 0),(0, 1, 0)和(0, 0, 1)线性无关。但(2, −1, 1),(1, 0, 1)和(3, −1, 2)线性相关,因为第三个是前两个的和。

     自己的话:一组向量,如果其中一个向量可以用剩余其它向量线性组合来表示,则称这组向量线性相关。否则称它们为线性无关。

      几何意义:在几何 空间R^3中,两个向量不共线,或三个向量不共面。就说这两个(三个)向量                        线性无关。

       代数定义:设a1,a2,...,an是向量组,若存在一组数k1,k2,...,kn,使得:k1a1+k2a2+...+knan=0  只在                         k1=k2=...=kn=0时成立。则称向量组a1,a2...an线性无关。

极大线性无关组

            设S是一个n维向量组,α1,α2,...αr 是S的一个部分组,如

                     (1) α1,α2,...αr 线性无关;

                     (2) 向量组S中每一个向量均可由此部分组线性表示

                   那 么α1,α2,...αr 称为向量组S的一个极大线性无关组,或极大无关组。

      三个性质:

           1、  任意一个极大线性无关组都与向量组本身等价。

            2、向量组的任意两个极大线性无关组都是等价的。

            3、若一个向量组中的每个向量都能用另一个向量组中的向量线性表出,则前者极大线性无                    关向量组的向量个数小于或等于后者

向量组的秩

      它表示的是一个向量组的极大线性无关组所含向量的个数。由向量组的秩可以引出矩阵的秩的定义。

     向量组的秩的大小的意义表示这个向量组可以有这么组向量来表示这个向量组的空间了。向量组的空间维度大小与该组任何一个向量的维度没关,向量组的空间维度大小它由这个向量组的秩决定。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,133评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,682评论 3 390
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,784评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,508评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,603评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,607评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,604评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,359评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,805评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,121评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,280评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,959评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,588评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,206评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,193评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,144评论 2 352

推荐阅读更多精彩内容

  • 数学是计算机技术的基础,线性代数是机器学习和深度学习的基础,了解数据知识最好的方法我觉得是理解概念,数学不只是上学...
    闯王来了要纳粮阅读 22,692评论 2 48
  • 前言 第一次接触线性代数是在大一的第一学期,学完以后分数不低,但是在结束考试后我就有点心虚,在这一段时间因为有个阿...
    云时之间阅读 1,289评论 0 5
  • 第一章 行列式 三点内容。 一、计算。 1、数字型行列式计算用展开公式。注意用技巧多创造0:把某一行的k 倍加到第...
    苏醒7阅读 2,491评论 0 2
  • 2017年考研数学一大纲原文 考试科目:高等数学、线性代数、概率论与数理统计 考试形式和试卷结构 一、试卷满分及考...
    SheBang_阅读 621评论 0 7
  • 考试形式和试卷结构一、试卷满分及考试时间 试卷满分为150分,考试时间为180分钟 二、答题方式 答题方式为闭卷、...
    幻无名阅读 751评论 0 3