面试官:如果让你设计一个消息中间件,如何将其网络通信性能优化10倍以上?

目录

1、客户端与服务端的交互

2、频繁网络通信带来的性能低下问题

3、batch机制:多条消息打包成一个batch

4、request机制:多个batch打包成一个request

这篇文章,给大家聊一个消息中间件相关的技术话题,对于一个优秀的消息中间件而言,客户端与服务端通信的时候,对于这个网络通信的机制应该如何设计,才能保证性能最优呢?甚至通过优秀的设计,让性能提升10倍以上。

我们本文就以Kafka为例来给大家分析一下,Kafka在客户端与服务端通信的时候,底层的一些网络通信相关的机制如何设计以及如何进行优化的。

1、客户端与服务端的交互

假如我们用kafka作为消息中间件,势必会有客户端作为生产者向他发送消息,这个大家应该都可以理解。


对于Kafka来说,他本身是支持分布式的消息存储的,什么意思呢?

比如说现在你有一个“Topic”,一个“Topic”你就可以理解为一个消息数据的逻辑上的集合。

比如现在你要把所有的订单数据都发送到一个“Topic”里去,那么这个“Topic”就叫做“OrderTopic”,里面都放的是订单数据。

接着这个“Topic”的数据可能量很大很大,不可能放在一台机器上吧?

所以呢,我们就可以分散存储在多台Kafka的机器上,每台机器存储一部分的数据即可。

这就是Kafka的分布式消息存储的机制,每个Kafka服务端叫做一个Broker,负责管理一台机器上的数据。

一起来看看下面的图:


一个“Topic”可以拆分为多个“Partition”,每个“Partition”存储一部分数据,每个Partition都可以放在不同的Kafka Broker机器上,这样就实现了数据分散存储在多台机器上的效果了。

然后客户端在发送消息到Kafka Broker的时候,比如说你限定了“OrderTopic”的订单数据拆分为3个“Partition”,那么3个“Partition”分别放在一个Kafka Broker上,那么也就是要把所有的订单数据分发到三个Kafka Broker上去。

此时就会默认情况下走一个负载均衡的策略,举个例子,假设订单数据一共有3万条,就会给每个Partition分发1万条订单消息,这样订单数据均匀分散在了3台Broker机器上。

整个过程,如下图所示:


2、频繁网络通信带来的性能低下问题

好了,现在问题来了,客户端在发送消息给Kafka Broker的时候,比如说现在要发送一个订单到Kafka上去,此时他是怎么发送过去呢?

是直接一条订单消息就对应一个网络请求,发送到一台Broker上去吗?

如果是这样做的话,那势必会导致频繁的跟一台broker进行网络通信,频繁的网络通信,每次都涉及到复杂的网络连接、传输的流程,那么进而会导致客户端性能的低下。

给大家举个例子,比如说每次通过一个网络通信发送一条订单到broker,需要耗时10ms。

那么如果一个订单就一次网络通信发送到broker,每秒最多就是发送100个订单了,大家想想,是不是这个道理?

但是假如说你每秒有10000个订单要发送,此时就会造成你的发送性能远远跟不上你的需求,也就是性能的低下,看起来你的系统发送订单到kafka的速度就是特别的慢。


3、batch机制:多条消息打包成一个batch

所以首先针对这个问题,kafka做的第一个优化,就是实现了batch机制

这个意思就是说,他会在客户端放一个内存缓冲区,每次你写一条订单先放到内存缓冲区里去,然后在内存缓冲区里,会把多个订单给打包起来成为一个batch。

比如说默认kafka规定的batch的大小是16kb,那么意思就是,你默认就是多条订单凑满16kb的大小,就会成为一个batch,然后他就会把这个batch通过网络通信发送到broker上去。

假如说一个batch发送到broker,同样也是耗费10ms而已,但是一个batch里可以放入100条订单,那么1秒是不是可以发送100个batch?

此时,1秒是不是就可以发送10000条订单出去了?

而且在打包消息形成batch的时候,是有讲究的,你必须是发送到同一个Topic的同一个Partition的消息,才会进入一个batch。

这个batch里就代表要发送到同一个Partition的多条消息,这样后续才能通过一个网络请求,就把这个batch发送到broker,对应写入一个Parititon中。


4、request机制:多个batch打包成一个request

事情到这里就结束了吗?还没有!

比如现在我们要是手头有两个Topic,每个Topic都有3个Partition,那么每个Broker是不是就会存放2个Partition?其中1个Partition是Topic01的,1个Partition是Topic02的。


最后大家可以关注我或者关注下我的专栏给小伙伴们带来更多精彩的内容

https://www.jianshu.com/c/76c4c7b817f8

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,616评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,020评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,078评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,040评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,154评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,265评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,298评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,072评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,491评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,795评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,970评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,654评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,272评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,985评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,815评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,852评论 2 351

推荐阅读更多精彩内容