信息熵、条件熵、信息增益、信息增益率

一、信息熵

1. 信息熵提出背景

    我们生活在一个信息爆炸的时代,从信息学的角度来说,人类进步的本质就是不断的打破信息的不对称性。我们讨厌不确定性,我们一生都在试图将所有的不确定性变成我们可能预测可能掌控的东西。

2. 什么是信息熵

    在信息学中,对于接收者来说,发送者发送的信息是不确定的,所以对于接收者来说,他会接受到的信息是随机的,这里就引入了熵的概念。统计学中说熵的概念是一个系统可能存在的状态的个数的对数。虽然对于接收者来说,他可能接收的信息的个数是随机的,但是总是在一个范围内,他可能接收的信息的个数的对数就是信息熵。

3. 信息熵的公式

    为了计算熵,我们需要计算所有类别所有肯能值所包含的期望值,事物的不确定越大,信息熵越大。

  H = - \sum_{k=1}^m p_{k}\log_2 p_{k} ,其中 m 代表将事物分类的概率为k种,p_{k} 代表了将事物分类为k类型的概率。

4. 信息熵使用场景

    cart剪枝,一般有两种,利用基尼系数或信息熵。

5. 信息熵存在的问题

    从信息熵的公式我们可以看到,信息越确定,信息熵越小。在生活场景中,像id之类的特征通过信息熵公式计算得到的信息熵很高,但是实际上这个特征对我们判断决策所起的作用很小,比如身份证号、手机号等信息。 

二、条件熵

1. 条件熵提出背景

    我们知道有的特征携带的熵很多,但是这个特征又真正对我要决策的事情有多大的重要性呢,这时候我们很容易想到条件概率,这时候我们引出了条件熵这个概念。

2. 什么是条件熵

    条件熵H(Y|X)表示在已知随机变量X的条件下随机变量Y的不确定性。

3. 条件熵的公式

    随机变量X给定的条件下随机变量Y的条件熵公式如下:

    H(Y|X) = \sum_{i=1}^mp_{i}H(Y|X=x_{i} )   

    其中,p_{i} = P(X = x_{i} )

三、信息增益

1.信息增益提出背景

    拿我们生活的场景来举个栗子, 比如闺蜜电话约我去逛街,提到我们逛街完了吃火锅,那天刚好下雪,然后我恰巧还来例假了,我这时候有两种决策,去或者不去。这里我们将上面场景中的信息概括下就是,买物品(买衣服?买包包?买鞋子?买花?买居家用品?)、吃饭(吃火锅?吃串串?吃小吃?吃披萨?)、天气(下雨?下雪?晴天?阴天?);例假(是?否?),聊天,那么这么多特征中,哪些是决定我去或者不去的重要因素呢?如果单从信息熵的角度来看,那么哪个特征的属性越多,它的信息熵越大,重要性越大,事实却不是如此。对我来说,去的理由也许买物品不重要,吃什么也不重要,而我好长时间没有见到她了,想她了是真的,所以“聊天”这个特征决定我会做出赴约这个决策。串起来就是"在聊天这个特征条件下极大的增加了我做出赴约决策的确定性"。

2. 什么是信息增益

    信息增益表示得知特征X的信息而使得类Y的信息不确定性减少的程度。

3. 信息增益公式

    g(D,A) = H(D) - H(D|A)

    这里D是决策,A是条件特征

4. 信息增益的使用场景

   信息处理中, ID3算法的核心是在决策树各个结点上对应信息增益准则选择特征,递归地构建决策树。

5. 信息增益存在的问题

    从信息增益公式我们可以看到,前面唯一id特征信息熵的问题还是没有解决掉。那么有没有什么方法可以平衡id特征信息熵过大的问题,我们很容易想到将特征id自身的信息熵作为分母去平衡整个的计算结果,这时候就有人提出了信息增益率这个概念。

四、信息增益率

1. 信息增益率提出背景

   信息增益率,其表示节点的信息与节点分裂信息度量的比值,增益率通常作为属性选择的方法之一

2. 什么是信息增益率

  信息增益率,其表示节点的信息与节点分裂信息度量的比值,增益率通常作为属性选择的方法之一

3. 信息增益率公式


上图为盗图,解释的比较清楚,这里就不重复说了。

4. 信息增益率使用场景

    C4.5算法就使用了信息增益率作为剪枝条件。

五、参考文献

    https://www.cnblogs.com/ironan-liu/p/11769229.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,012评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,628评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,653评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,485评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,574评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,590评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,596评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,340评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,794评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,102评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,276评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,940评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,583评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,201评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,441评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,173评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,136评论 2 352

推荐阅读更多精彩内容