Scikit-learn中的决策树

写在之前

想看程序参数说明的请到:

正文部分

决策树是一个非参数的监督式学习方法,主要用于分类和回归。算法的目标是通过推断数据特征,学习决策规则从而创建一个预测目标变量的模型。如下如所示,决策树通过一系列if-then-else 决策规则 近似估计一个正弦曲线。

../_images/sphx_glr_plot_tree_regression_0011.png

决策树优势:

  • 简单易懂,原理清晰,决策树可以实现可视化
  • 数据准备简单。其他的方法需要实现数据归一化,创建虚拟变量,删除空白变量。(注意:这个模块不支持缺失值)
  • 使用决策树的代价是数据点的对数级别。
  • 能够处理数值和分类数据
  • 能够处理多路输出问题
  • 使用白盒子模型(内部结构可以直接观测的模型)。一个给定的情况是可以观测的,那么就可以用布尔逻辑解释这个结果。相反,如果在一个黑盒模型(ANN),结果可能很难解释
  • 可以通过统计学检验验证模型。这也使得模型的可靠性计算变得可能
  • 即使模型假设违反产生数据的真实模型,表现性能依旧很好。

决策树劣势:

  • 可能会建立过于复杂的规则,即过拟合。为避免这个问题,剪枝、设置叶节点的最小样本数量、设置决策树的最大深度有时候是必要的。
  • 决策树有时候是不稳定的,因为数据微小的变动,可能生成完全不同的决策树。 可以通过总体平均(ensemble)减缓这个问题。应该指的是多次实验。
  • 学习最优决策树是一个NP完全问题。所以,实际决策树学习算法是基于试探性算法,例如在每个节点实现局部最优值的贪心算法。这样的算法是无法保证返回一个全局最优的决策树。可以通过随机选择特征和样本训练多个决策树来缓解这个问题。
  • 有些问题学习起来非常难,因为决策树很难表达。如:异或问题、奇偶校验或多路复用器问题
  • 如果有些因素占据支配地位,决策树是有偏的。因此建议在拟合决策树之前先平衡数据的影响因子。

分类

DecisionTreeClassifier 能够实现多类别的分类。输入两个向量:向量X,大小为[n_samples,n_features],用于记录训练样本;向量Y,大小为[n_samples],用于存储训练样本的类标签。

from sklearn import tree
X = [[0, 0], [1, 1]]
Y = [0, 1]
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, Y)

clf.predict([[2., 2.]])
clf.predict_proba([[2., 2.]])       #计算属于每个类的概率

能够实现二进制分类和多分类。使用Isis数据集,有:

from sklearn.datasets import load_iris
from sklearn import tree
iris = load_iris()
clf = tree.DecisionTreeClassifier()
clf = clf.fit(iris.data, iris.target)

# export the tree in Graphviz format using the export_graphviz exporter
with open("iris.dot", 'w') as f:
    f = tree.export_graphviz(clf, out_file=f)
    
# predict the class of samples
clf.predict(iris.data[:1, :])
# the probability of each class
clf.predict_proba(iris.data[:1, :])

安装Graphviz将其添加到环境变量,使用dot创建一个PDF文件。dot -Tpdf iris.dot -o iris.pdf

# 删除dot文件
import os
os.unlink('iris.dot')

如果安装了pydotplus,也可以在Python中直接生成:

import pydotplus 
dot_data = tree.export_graphviz(clf, out_file=None) 
graph = pydotplus.graph_from_dot_data(dot_data) 
graph.write_pdf("iris.pdf") 

可以根据不同的类别输出不同的颜色,也可以指定类别名字。

from IPython.display import Image  
dot_data = tree.export_graphviz(clf, out_file=None, 
                     feature_names=iris.feature_names,  
                     class_names=iris.target_names,  
                     filled=True, rounded=True,  
                     special_characters=True)  
graph = pydotplus.graph_from_dot_data(dot_data)  
Image(graph.create_png()) 
../_images/iris.svg
../_images/iris.svg

更多地可以看到分类的效果:

../_images/sphx_glr_plot_iris_0013.png

回归

和分类不同的是向量y可以是浮点数。

from sklearn import tree
X = [[0, 0], [2, 2]]
y = [0.5, 2.5]
clf = tree.DecisionTreeRegressor()
clf = clf.fit(X, y)
clf.predict([[1, 1]])

本文前面提到的例子:http://scikit-learn.org/stable/auto_examples/tree/plot_tree_regression.html#sphx-glr-auto-examples-tree-plot-tree-regression-py

# Import the necessary modules and libraries
import numpy as np
from sklearn.tree import DecisionTreeRegressor
import matplotlib.pyplot as plt

# Create a random dataset
rng = np.random.RandomState(1)
X = np.sort(5 * rng.rand(80, 1), axis=0)
y = np.sin(X).ravel()
y[::5] += 3 * (0.5 - rng.rand(16))

# Fit regression model
regr_1 = DecisionTreeRegressor(max_depth=2)
regr_2 = DecisionTreeRegressor(max_depth=5)
regr_1.fit(X, y)
regr_2.fit(X, y)

# Predict
X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]
y_1 = regr_1.predict(X_test)
y_2 = regr_2.predict(X_test)

# Plot the results
plt.figure()
plt.scatter(X, y, c="darkorange", label="data")
plt.plot(X_test, y_1, color="cornflowerblue", label="max_depth=2", linewidth=2)
plt.plot(X_test, y_2, color="yellowgreen", label="max_depth=5", linewidth=2)
plt.xlabel("data")
plt.ylabel("target")
plt.title("Decision Tree Regression")
plt.legend()
plt.show()

多输出问题

多输出问题时需要预测多个输出的监督式学习问题。即Y是一个2d的向量,大小为[n_samples, n_outputs]。

当输出之间不相关时,一个简单的解决办法是建立n个独立模型。对于每一个输出,使用这些模型独立预测这每个输出。由于输出是和相同的输入相关的,所以一个更好的办法是建立一个能够持续预测所有输出的单一模型。首先,系统需要的训练时间更少了,因为只建立了一个模型。其次准确性也会得到提高。

决策树的策略需要修改以支持多分类问题。

  • 叶子上存储n个输出变量
  • 使用不同的标准计算所有n输出的平均减少

这一节是关于 DecisionTreeClassifierDecisionTreeRegressor的一些知识点。如果一个决策树的输出向量Y大小为[n_samples, n_outputs],预测量有:

  • predict:输出n个预测值
  • predict_proba:输出有n个输出的向量组成的列表。

多输出的回归的例子:输入X是一个单一的值,输出Y是输入X的Sine和Cosine。

Multi-output Decision Tree Regression

../_images/sphx_glr_plot_tree_regression_multioutput_0011.png

多输出的分类的例子:Face completion with a multi-output estimators

输入X是上半脸的像素,输出Y是下半脸的像素。

../_images/sphx_glr_plot_multioutput_face_completion_0011.png

参考文献:

复杂度

通常生成一个二进制树运行时间为

查询时间为
虽然构建的算法意图建立一个均衡的树,但是不总是均衡的。假设子树保持均衡,每个节点的消耗为
以查找使熵最大减少的特征。每个节点的消耗为

,使得整个树的消耗为

Scikit-learn提供了建立决策树的一种更加高效的实现。简单的实现,在每次划分时,将会重新计算类标签的直方图(分类)或者均值(回归)。将所有相关样本特征预分类保留标签计数,将每个节点的复杂度减少为

,同时将整体复杂度减少为
。默认是开启的,一般来说会使得训练更快,但是如果关闭,则训练深层决策树的时候训练会变慢。

使用小贴士

  • 如果数据量大,决策树容易过拟合。样本和特征的比例非常重要。如果决策树样本少,特征多,非常可能过拟合。
  • 可以考虑事先做维度约减(PCA,ICA),以产生一个特征之间区别性大的决策树
  • 通过export将你的训练的决策树可视化,使用max_depth =3作为一个初始的树的深度,有一个数据拟合决策树模型的大概感觉,然后逐渐增加深度
  • 数据的样本量的增加将加深决策树的深度,使用max_depth控制决策树的尺寸以防止过拟合
  • 使用min_samples_split 或者 min_samples_leaf来控制叶节点的样本数量。一个非常小的数量往往意味着过拟合,而一个较大的数可以防止过拟合。可以将min_samples_leaf=5作为一个初始值。如果样本数据变化巨大,可以采用一个浮点数。两者的区别在于min_samples_leaf保证了叶节点最小的数量,min_samples_split能够建立任意数量的叶子节点,在文学上用到也更多
  • 如果样本是有权重的,可以使用min_weight_fraction_leaf来实现基于权重的预修剪规则来优化决策树结构
  • 决策树内部使用np.float32向量,如果样本不是这个形式的,将产生一个数据集的样本
  • 如果数据矩阵X是非常稀疏的,建议在拟合和预测之前转换为稀疏矩阵csc_matrix。稀疏矩阵将比稠密矩阵快数量级的速度

决策树算法:ID3,C4.5,C5.0,CART

ID3是由Ross Quinlan在1985年建立的。这个方法建立多路决策树,并找到最大的信息增益。当树长到最大的尺寸,经常应用剪枝来提高决策树对未知数据的一般化。

C4.5是ID3的进一步延伸,通过将连续属性离散化,去除了特征的限制。C4.5将训练树转换为一系列if-then的语法规则。可确定这些规则的准确性,从而决定哪些应该被采用。如果去掉某项规则,准确性能提高,则应该实行修剪。

C5.0较C4.5使用更小的内存,建立更小的决策规则,更加准确。

CART和C4.5很相似,但是它支持数值的目标变量(回归)且不产生决策规则。CART使用特征和阈值在每个节点获得最大的信息增益来构建决策树。

scikit-learn使用一个最佳的CART算法

数学公式

训练向量

i=1,...和标签向量
,决策树递归地划分空间,以使得相同标签的样本被分到一起。用Q表示在节点m的数据,对于每一个候选划分
由特征j和阈值

,将数据划分为
两个子集

m节点的不纯度用函数H()计算,

选择参数是的不纯度最小:

递归以上,直至达到最大可允许的深度,

或者

分类标准

类k在节点m的比例:

Gini不纯度:

交叉熵:

误分类:

回归标准

函数 函数功能
apply(X[, check_input]) 返回每个样本的叶节点的预测序号
decision_path(X[, check_input]) 返回决策树的决策路径 [n_samples, n_nodes]
fit(X, y[, sample_weight, check_input, ...]) 从训练数据建立决策树,返回一个对象
fit_transform(X[, y]) 将数据X转换[n_samples, n_features_new]
get_params([deep]) 得到估计量的参数,返回一个映射
predict(X[, check_input]) 预测X的分类或者回归,返回[n_samples]
predict_log_proba(X) 预测输入样本的对数概率,返回[n_samples, n_classes]
predict_proba(X[, check_input]) 预测输入样本的属于各个类的概率[n_samples, n_classes]
score(X, y[, sample_weight]) 返回对于测试数据的平均准确率
set_params(**params) 设置估计量的参数
transform(*args, **kwargs) 将输入参数X减少的最重要的特征,返回[n_samples, n_selected_features]

参考文献
-http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,377评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,390评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,967评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,344评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,441评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,492评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,497评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,274评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,732评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,008评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,184评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,837评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,520评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,156评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,407评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,056评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,074评论 2 352

推荐阅读更多精彩内容