cellchat运行失败记录1

> library(CellChat)
载入需要的程辑包:dplyr

载入程辑包:‘dplyr’

The following objects are masked from ‘package:stats’:

    filter, lag

The following objects are masked from ‘package:base’:

    intersect, setdiff, setequal, union

载入需要的程辑包:igraph

载入程辑包:‘igraph’

The following objects are masked from ‘package:dplyr’:

    as_data_frame, groups, union

The following objects are masked from ‘package:stats’:

    decompose, spectrum

The following object is masked from ‘package:base’:

    union

载入需要的程辑包:ggplot2
> library(patchwork)
> options(stringsAsFactors = FALSE)
> # Here we load a scRNA-seq data matrix and its associated cell meta data
> load(url("https://ndownloader.figshare.com/files/25950872")) # This is a combined data from two biological conditions: normal and diseases
> data.input = data_humanSkin$data # normalized data matrix
> meta = data_humanSkin$meta # a dataframe with rownames containing cell mata data
> cell.use = rownames(meta)[meta$condition == "LS"] # extract the cell names from disease data
> # Prepare input data for CelChat analysis
> data.input = data.input[, cell.use]
> meta = meta[cell.use, ]
> # meta = data.frame(labels = meta$labels[cell.use], row.names = colnames(data.input)) # manually create a dataframe consisting of the cell labels
> unique(meta$labels) # check the cell labels
 [1] Inflam. FIB  FBN1+ FIB    APOE+ FIB    COL11A1+ FIB cDC2        
 [6] LC           Inflam. DC   cDC1         CD40LG+ TC   Inflam. TC  
[11] TC           NKT         
12 Levels: APOE+ FIB FBN1+ FIB COL11A1+ FIB Inflam. FIB cDC1 ... NKT
> cellchat <- createCellChat(object = data.input, meta = meta, group.by = "labels")
Create a CellChat object from a data matrix
Set cell identities for the new CellChat object
The cell groups used for CellChat analysis are  APOE+ FIB FBN1+ FIB COL11A1+ FIB Inflam. FIB cDC1 cDC2 LC Inflam. DC TC Inflam. TC CD40LG+ TC NKT 
> cellchat <- addMeta(cellchat, meta = meta)
> cellchat <- setIdent(cellchat, ident.use = "labels") # set "labels" as default cell identity
> levels(cellchat@idents) # show factor levels of the cell labels
 [1] "APOE+ FIB"    "FBN1+ FIB"    "COL11A1+ FIB" "Inflam. FIB" 
 [5] "cDC1"         "cDC2"         "LC"           "Inflam. DC"  
 [9] "TC"           "Inflam. TC"   "CD40LG+ TC"   "NKT"         
> groupSize <- as.numeric(table(cellchat@idents)) # number of cells in each cell group
> CellChatDB <- CellChatDB.human # use CellChatDB.mouse if running on mouse data
> showDatabaseCategory(CellChatDB)
> # Show the structure of the database
> dplyr::glimpse(CellChatDB$interaction)
Rows: 1,939
Columns: 11
$ interaction_name   <chr> "TGFB1_TGFBR1_TGFBR2", "TGFB2_TGFBR1_T...
$ pathway_name       <chr> "TGFb", "TGFb", "TGFb", "TGFb", "TGFb"...
$ ligand             <chr> "TGFB1", "TGFB2", "TGFB3", "TGFB1", "T...
$ receptor           <chr> "TGFbR1_R2", "TGFbR1_R2", "TGFbR1_R2",...
$ agonist            <chr> "TGFb agonist", "TGFb agonist", "TGFb ...
$ antagonist         <chr> "TGFb antagonist", "TGFb antagonist", ...
$ co_A_receptor      <chr> "", "", "", "", "", "", "", "", "", ""...
$ co_I_receptor      <chr> "TGFb inhibition receptor", "TGFb inhi...
$ evidence           <chr> "KEGG: hsa04350", "KEGG: hsa04350", "K...
$ annotation         <chr> "Secreted Signaling", "Secreted Signal...
$ interaction_name_2 <chr> "TGFB1 - (TGFBR1+TGFBR2)", "TGFB2 - (T...
> # use a subset of CellChatDB for cell-cell communication analysis
> CellChatDB.use <- subsetDB(CellChatDB, search = "Secreted Signaling") # use Secreted Signaling
> # set the used database in the object
> cellchat@DB <- CellChatDB.use
> cellchat <- subsetData(cellchat) # subset the expression data of signaling genes for saving computation cost
> future::plan("multiprocess", workers = 4) # do parallel
> #> Warning: [ONE-TIME WARNING] Forked processing ('multicore') is disabled
> #> in future (>= 1.13.0) when running R from RStudio, because it is
> #> considered unstable. Because of this, plan("multicore") will fall
> #> back to plan("sequential"), and plan("multiprocess") will fall back to
> #> plan("multisession") - not plan("multicore") as in the past. For more details,
> #> how to control forked processing or not, and how to silence this warning in
> #> future R sessions, see ?future::supportsMulticore
> cellchat <- identifyOverExpressedGenes(cellchat)
> cellchat <- identifyOverExpressedInteractions(cellchat)
> cellchat <- projectData(cellchat, PPI.human)
> cellchat <- computeCommunProb(cellchat, raw.use = TRUE)
> # Filter out the cell-cell communication if there are only few number of cells in certain cell groups
> cellchat <- filterCommunication(cellchat, min.cells = 10)
> cellchat <- computeCommunProbPathway(cellchat)
> cellchat <- aggregateNet(cellchat)
> groupSize <- as.numeric(table(cellchat@idents))
> par(mfrow = c(1,2), xpd=TRUE)
> netVisual_circle(cellchat@net$count, vertex.weight = groupSize, weight.scale = T, label.edge= F, title.name = "Number of interactions")
> netVisual_circle(cellchat@net$weight, vertex.weight = groupSize, weight.scale = T, label.edge= F, title.name = "Interaction weights/strength")
> mat <- cellchat@net$weight
> par(mfrow = c(3,4), xpd=TRUE)
> for (i in 1:nrow(mat)) {
+   mat2 <- matrix(0, nrow = nrow(mat), ncol = ncol(mat), dimnames = dimnames(mat))
+   mat2[i, ] <- mat[i, ]
+   netVisual_circle(mat2, vertex.weight = groupSize, weight.scale = T, edge.weight.max = max(mat), title.name = rownames(mat)[i])
+ }
> pathways.show <- c("CXCL") 
> # Hierarchy plot
> # Here we define `vertex.receive` so that the left portion of the hierarchy plot shows signaling to fibroblast and the right portion shows signaling to immune cells 
> vertex.receiver = seq(1,4) # a numeric vector. 
> netVisual_aggregate(cellchat, signaling = pathways.show,  vertex.receiver = vertex.receiver)
> # Circle plot
> par(mfrow=c(1,1))
> netVisual_aggregate(cellchat, signaling = pathways.show, layout = "circle")
> # Chord diagram
> par(mfrow=c(1,1))
> netVisual_aggregate(cellchat, signaling = pathways.show, layout = "chord")
Note: The first link end is drawn out of sector 'Inflam. FIB'.
> #> Note: The first link end is drawn out of sector 'Inflam. FIB'.
> # Heatmap
> par(mfrow=c(1,1))
> netVisual_heatmap(cellchat, signaling = pathways.show, color.heatmap = "Reds")
Do heatmap based on a single object 

> # Chord diagram
> group.cellType <- c(rep("FIB", 4), rep("DC", 4), rep("TC", 4)) # grouping cell clusters into fibroblast, DC and TC cells
> names(group.cellType) <- levels(cellchat@idents)
> netVisual_chord_cell(cellchat, signaling = pathways.show, group = group.cellType, title.name = paste0(pathways.show, " signaling network"))
Plot the aggregated cell-cell communication network at the signaling pathway level
Note: The first link end is drawn out of sector 'Inflam. FIB'.
> netAnalysis_contribution(cellchat, signaling = pathways.show)
> pairLR.CXCL <- extractEnrichedLR(cellchat, signaling = pathways.show, geneLR.return = FALSE)
> LR.show <- pairLR.CXCL[1,] # show one ligand-receptor pair
> # Hierarchy plot
> vertex.receiver = seq(1,4) # a numeric vector
> netVisual_individual(cellchat, signaling = pathways.show,  pairLR.use = LR.show, vertex.receiver = vertex.receiver)
> # Circle plot
> netVisual_individual(cellchat, signaling = pathways.show, pairLR.use = LR.show, layout = "circle")
[[1]]

> #> [[1]]
> # Chord diagram
> netVisual_individual(cellchat, signaling = pathways.show, pairLR.use = LR.show, layout = "chord")
Note: The first link end is drawn out of sector 'Inflam. FIB'.
[[1]]

> # Access all the signaling pathways showing significant communications
> pathways.show.all <- cellchat@netP$pathways
> # check the order of cell identity to set suitable vertex.receiver
> levels(cellchat@idents)
 [1] "APOE+ FIB"    "FBN1+ FIB"    "COL11A1+ FIB" "Inflam. FIB" 
 [5] "cDC1"         "cDC2"         "LC"           "Inflam. DC"  
 [9] "TC"           "Inflam. TC"   "CD40LG+ TC"   "NKT"         
> vertex.receiver = seq(1,4)
> for (i in 1:length(pathways.show.all)) {
+   # Visualize communication network associated with both signaling pathway and individual L-R pairs
+   netVisual(cellchat, signaling = pathways.show.all[i], vertex.receiver = vertex.receiver, layout = "hierarchy")
+   # Compute and visualize the contribution of each ligand-receptor pair to the overall signaling pathway
+   gg <- netAnalysis_contribution(cellchat, signaling = pathways.show.all[i])
+   ggsave(filename=paste0(pathways.show.all[i], "_L-R_contribution.pdf"), plot=gg, width = 3, height = 2, units = 'in', dpi = 300)
+ }
> # show all the significant interactions (L-R pairs) from some cell groups (defined by 'sources.use') to other cell groups (defined by 'targets.use')
> netVisual_bubble(cellchat, sources.use = 4, targets.use = c(5:11), remove.isolate = FALSE)
Comparing communications on a single object 

> # show all the significant interactions (L-R pairs) associated with certain signaling pathways
> netVisual_bubble(cellchat, sources.use = 4, targets.use = c(5:11), signaling = c("CCL","CXCL"), remove.isolate = FALSE)
Comparing communications on a single object 

> # show all the significant interactions (L-R pairs) based on user's input (defined by `pairLR.use`)
> pairLR.use <- extractEnrichedLR(cellchat, signaling = c("CCL","CXCL","FGF"))
> netVisual_bubble(cellchat, sources.use = c(3,4), targets.use = c(5:8), pairLR.use = pairLR.use, remove.isolate = TRUE)
Comparing communications on a single object 

> # show all the significant interactions (L-R pairs) from some cell groups (defined by 'sources.use') to other cell groups (defined by 'targets.use')
> # show all the interactions sending from Inflam.FIB
> netVisual_chord_gene(cellchat, sources.use = 4, targets.use = c(5:11), lab.cex = 0.5,legend.pos.y = 30)
Note: The first link end is drawn out of sector 'MIF'.
> # show all the interactions received by Inflam.DC
> netVisual_chord_gene(cellchat, sources.use = c(1,2,3,4), targets.use = 8, legend.pos.x = 15)
> # show all the significant interactions (L-R pairs) associated with certain signaling pathways
> netVisual_chord_gene(cellchat, sources.use = c(1,2,3,4), targets.use = c(5:11), signaling = c("CCL","CXCL"),legend.pos.x = 8)
Note: The second link end is drawn out of sector 'CXCR4 '.
Note: The first link end is drawn out of sector 'CXCL12 '.
> # show all the significant signaling pathways from some cell groups (defined by 'sources.use') to other cell groups (defined by 'targets.use')
> netVisual_chord_gene(cellchat, sources.use = c(1,2,3,4), targets.use = c(5:11), slot.name = "netP", legend.pos.x = 10)
Note: The second link end is drawn out of sector ' '.
Note: The first link end is drawn out of sector 'MIF'.
Note: The second link end is drawn out of sector ' '.
Note: The first link end is drawn out of sector 'CXCL '.
> plotGeneExpression(cellchat, signaling = "CXCL")
Registered S3 method overwritten by 'spatstat':
  method     from
  print.boxx cli 
Scale for 'y' is already present. Adding another scale for 'y',
which will replace the existing scale.
Scale for 'y' is already present. Adding another scale for 'y',
which will replace the existing scale.
Scale for 'y' is already present. Adding another scale for 'y',
which will replace the existing scale.
> plotGeneExpression(cellchat, signaling = "CXCL", enriched.only = FALSE)
Scale for 'y' is already present. Adding another scale for 'y',
which will replace the existing scale.
Scale for 'y' is already present. Adding another scale for 'y',
which will replace the existing scale.
Scale for 'y' is already present. Adding another scale for 'y',
which will replace the existing scale.
Scale for 'y' is already present. Adding another scale for 'y',
which will replace the existing scale.
Scale for 'y' is already present. Adding another scale for 'y',
which will replace the existing scale.
Scale for 'y' is already present. Adding another scale for 'y',
which will replace the existing scale.
Scale for 'y' is already present. Adding another scale for 'y',
which will replace the existing scale.
Scale for 'y' is already present. Adding another scale for 'y',
which will replace the existing scale.
Scale for 'y' is already present. Adding another scale for 'y',
which will replace the existing scale.
Scale for 'y' is already present. Adding another scale for 'y',
which will replace the existing scale.
Scale for 'y' is already present. Adding another scale for 'y',
which will replace the existing scale.
Scale for 'y' is already present. Adding another scale for 'y',
which will replace the existing scale.
Scale for 'y' is already present. Adding another scale for 'y',
which will replace the existing scale.
Scale for 'y' is already present. Adding another scale for 'y',
which will replace the existing scale.
Scale for 'y' is already present. Adding another scale for 'y',
which will replace the existing scale.
Scale for 'y' is already present. Adding another scale for 'y',
which will replace the existing scale.
Scale for 'y' is already present. Adding another scale for 'y',
which will replace the existing scale.
Scale for 'y' is already present. Adding another scale for 'y',
which will replace the existing scale.
> # Compute the network centrality scores
> cellchat <- netAnalysis_computeCentrality(cellchat, slot.name = "netP") # the slot 'netP' means the inferred intercellular communication network of signaling pathways
> # Visualize the computed centrality scores using heatmap, allowing ready identification of major signaling roles of cell groups
> netAnalysis_signalingRole_network(cellchat, signaling = pathways.show, width = 8, height = 2.5, font.size = 10)
> # Signaling role analysis on the aggregated cell-cell communication network from all signaling pathways
> gg1 <- netAnalysis_signalingRole_scatter(cellchat)
Signaling role analysis on the aggregated cell-cell communication network from all signaling pathways
> #> Signaling role analysis on the aggregated cell-cell communication network from all signaling pathways
> # Signaling role analysis on the cell-cell communication networks of interest
> gg2 <- netAnalysis_signalingRole_scatter(cellchat, signaling = c("CXCL", "CCL"))
Signaling role analysis on the cell-cell communication network from user's input
> #> Signaling role analysis on the cell-cell communication network from user's input
> gg1 + gg2
> # Signaling role analysis on the aggregated cell-cell communication network from all signaling pathways
> ht1 <- netAnalysis_signalingRole_heatmap(cellchat, pattern = "outgoing")
> ht2 <- netAnalysis_signalingRole_heatmap(cellchat, pattern = "incoming")
> ht1 + ht2
> # Signaling role analysis on the cell-cell communication networks of interest
> ht <- netAnalysis_signalingRole_heatmap(cellchat, signaling = c("CXCL", "CCL"))
> library(NMF)
载入需要的程辑包:pkgmaker
载入需要的程辑包:registry
载入需要的程辑包:rngtools
载入需要的程辑包:cluster
NMF - BioConductor layer [OK] | Shared memory capabilities [NO: windows] | Cores 3/4

载入程辑包:‘NMF’

The following objects are masked from ‘package:igraph’:

    algorithm, compare

> #> Loading required package: cluster
> #> NMF - BioConductor layer [OK] | Shared memory capabilities [NO: bigmemory] | Cores 15/16
> #>   To enable shared memory capabilities, try: install.extras('
> #> NMF
> #> ')
> #> 
> #> Attaching package: 'NMF'
> #> The following objects are masked from 'package:igraph':
> #> 
> #>     algorithm, compare
> library(ggalluvial)
> selectK(cellchat, pattern = "outgoing")#慢
> nPatterns = 3
> cellchat <- identifyCommunicationPatterns(cellchat, pattern = "outgoing", k = nPatterns)
> # river plot
> netAnalysis_river(cellchat, pattern = "outgoing")
Please make sure you have load `library(ggalluvial)` when running this function
> #> Please make sure you have load `library(ggalluvial)` when running this function
> # dot plot
> netAnalysis_dot(cellchat, pattern = "outgoing")
> dev.off()
null device 
          1 
> selectK(cellchat, pattern = "incoming")
> nPatterns = 4
> cellchat <- identifyCommunicationPatterns(cellchat, pattern = "incoming", k = nPatterns)
> # river plot
> netAnalysis_river(cellchat, pattern = "incoming")
Please make sure you have load `library(ggalluvial)` when running this function
> #> Please make sure you have load `library(ggalluvial)` when running this function
> # dot plot
> netAnalysis_dot(cellchat, pattern = "incoming")
> #   BAOCUO
> library(Seurat)

Seurat v4 will be going to CRAN in the near future;
 for more details, please visit https://satijalab.org/seurat/v4_changes

> cellchat <- computeNetSimilarity(cellchat, type = "functional")
> cellchat <- netEmbedding(cellchat, type = "functional")
Manifold learning of the signaling networks for a single dataset 
No non-system installation of Python could be found.
Would you like to download and install Miniconda?
Miniconda is an open source environment management system for Python.
See https://docs.conda.io/en/latest/miniconda.html for more details.

Would you like to install Miniconda? [Y/n]: Y
* Downloading "https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe" ...
试开URL’https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe'
Content type 'application/octet-stream' length 59801432 bytes (57.0 MB)
downloaded 57.0 MB

* Installing Miniconda -- please wait a moment ...
Collecting package metadata (current_repodata.json): ...working... done
Solving environment: ...working... done

## Package Plan ##

  environment location: C:\Users\zzu\AppData\Local\R-MINI~1

  added / updated specs:
    - conda


The following packages will be downloaded:

    package                    |            build
    ---------------------------|-----------------
    ca-certificates-2021.1.19  |       haa95532_1         119 KB
    certifi-2020.12.5          |   py38haa95532_0         141 KB
    cffi-1.14.5                |   py38hcd4344a_0         224 KB
    chardet-4.0.0              |py38haa95532_1003         211 KB
    conda-4.10.0               |   py38haa95532_0         2.9 MB
    conda-package-handling-1.7.3|   py38h8cc25b3_1         721 KB
    cryptography-3.4.7         |   py38h71e12ea_0         643 KB
    idna-2.10                  |     pyhd3eb1b0_0          52 KB
    openssl-1.1.1k             |       h2bbff1b_0         4.8 MB
    pip-21.0.1                 |   py38haa95532_0         1.8 MB
    pyopenssl-20.0.1           |     pyhd3eb1b0_1          49 KB
    requests-2.25.1            |     pyhd3eb1b0_0          52 KB
    ruamel_yaml-0.15.100       |   py38h2bbff1b_0         273 KB
    setuptools-52.0.0          |   py38haa95532_0         726 KB
    sqlite-3.35.4              |       h2bbff1b_0         761 KB
    tqdm-4.59.0                |     pyhd3eb1b0_1          93 KB
    urllib3-1.26.4             |     pyhd3eb1b0_0         105 KB
    vc-14.2                    |       h21ff451_1           8 KB
    vs2015_runtime-14.27.29016 |       h5e58377_2        1007 KB
    wheel-0.36.2               |     pyhd3eb1b0_0          33 KB
    ------------------------------------------------------------
                                           Total:        14.6 MB

The following packages will be REMOVED:

  zlib-1.2.11-h62dcd97_4

The following packages will be UPDATED:

  ca-certificates                              2020.10.14-0 --> 2021.1.19-haa95532_1
  certifi            pkgs/main/noarch::certifi-2020.6.20-p~ --> pkgs/main/win-64::certifi-2020.12.5-py38haa95532_0
  cffi                                1.14.3-py38hcd4344a_2 --> 1.14.5-py38hcd4344a_0
  chardet                           3.0.4-py38haa95532_1003 --> 4.0.0-py38haa95532_1003
  conda                                4.9.2-py38haa95532_0 --> 4.10.0-py38haa95532_0
  conda-package-han~                   1.7.2-py38h76e460a_0 --> 1.7.3-py38h8cc25b3_1
  cryptography                         3.2.1-py38hcd4344a_1 --> 3.4.7-py38h71e12ea_0
  openssl                                 1.1.1h-he774522_0 --> 1.1.1k-h2bbff1b_0
  pip                                 20.2.4-py38haa95532_0 --> 21.0.1-py38haa95532_0
  pyopenssl                             19.1.0-pyhd3eb1b0_1 --> 20.0.1-pyhd3eb1b0_1
  requests                                      2.24.0-py_0 --> 2.25.1-pyhd3eb1b0_0
  ruamel_yaml                        0.15.87-py38he774522_1 --> 0.15.100-py38h2bbff1b_0
  setuptools                          50.3.1-py38haa95532_1 --> 52.0.0-py38haa95532_0
  sqlite                                  3.33.0-h2a8f88b_0 --> 3.35.4-h2bbff1b_0
  tqdm                                  4.51.0-pyhd3eb1b0_0 --> 4.59.0-pyhd3eb1b0_1
  urllib3                                      1.25.11-py_0 --> 1.26.4-pyhd3eb1b0_0
  vc                                        14.1-h0510ff6_4 --> 14.2-h21ff451_1
  vs2015_runtime                     14.16.27012-hf0eaf9b_3 --> 14.27.29016-h5e58377_2
  wheel                                 0.35.1-pyhd3eb1b0_0 --> 0.36.2-pyhd3eb1b0_0

The following packages will be DOWNGRADED:

  idna                                            2.10-py_0 --> 2.10-pyhd3eb1b0_0



Downloading and Extracting Packages
urllib3-1.26.4       | 105 KB    | ########## | 100% 
conda-package-handli | 721 KB    | ########## | 100% 
cryptography-3.4.7   | 643 KB    | ########## | 100% 
pyopenssl-20.0.1     | 49 KB     | ########## | 100% 
openssl-1.1.1k       | 4.8 MB    | ########## | 100% 
ruamel_yaml-0.15.100 | 273 KB    | ########## | 100% 
pip-21.0.1           | 1.8 MB    | ########## | 100% 
idna-2.10            | 52 KB     | ########## | 100% 
certifi-2020.12.5    | 141 KB    | ########## | 100% 
chardet-4.0.0        | 211 KB    | ########## | 100% 
ca-certificates-2021 | 119 KB    | ########## | 100% 
sqlite-3.35.4        | 761 KB    | ########## | 100% 
setuptools-52.0.0    | 726 KB    | ########## | 100% 
tqdm-4.59.0          | 93 KB     | ########## | 100% 
wheel-0.36.2         | 33 KB     | ########## | 100% 
conda-4.10.0         | 2.9 MB    | ########## | 100% 
vc-14.2              | 8 KB      | ########## | 100% 
vs2015_runtime-14.27 | 1007 KB   | ########## | 100% 
cffi-1.14.5          | 224 KB    | ########## | 100% 
requests-2.25.1      | 52 KB     | ########## | 100% 
Preparing transaction: ...working... done
Verifying transaction: ...working... done
Executing transaction: ...working... done
Collecting package metadata (current_repodata.json): ...working... done
Solving environment: ...working... done

## Package Plan ##

  environment location: C:\Users\zzu\AppData\Local\R-MINI~1\envs\r-reticulate

  added / updated specs:
    - numpy
    - python=3.6


The following packages will be downloaded:

    package                    |            build
    ---------------------------|-----------------
    certifi-2020.12.5          |   py36ha15d459_1         144 KB  conda-forge
    intel-openmp-2021.2.0      |     h57928b3_616         2.6 MB  conda-forge
    libblas-3.9.0              |            8_mkl         3.9 MB  conda-forge
    libcblas-3.9.0             |            8_mkl         3.9 MB  conda-forge
    liblapack-3.9.0            |            8_mkl         3.9 MB  conda-forge
    mkl-2020.4                 |     hb70f87d_311       172.4 MB  conda-forge
    numpy-1.19.5               |   py36hd1b969e_1         4.9 MB  conda-forge
    pip-21.0.1                 |     pyhd8ed1ab_0         1.1 MB  conda-forge
    python-3.6.13              |h39d44d4_0_cpython        19.0 MB  conda-forge
    python_abi-3.6             |          1_cp36m           4 KB  conda-forge
    setuptools-49.6.0          |   py36ha15d459_3         921 KB  conda-forge
    vc-14.2                    |       hb210afc_4          13 KB  conda-forge
    vs2015_runtime-14.28.29325 |       h5e1d092_4         2.3 MB  conda-forge
    wheel-0.36.2               |     pyhd3deb0d_0          31 KB  conda-forge
    wincertstore-0.2           |py36ha15d459_1006          15 KB  conda-forge
    ------------------------------------------------------------
                                           Total:       215.0 MB

The following NEW packages will be INSTALLED:

  certifi            conda-forge/win-64::certifi-2020.12.5-py36ha15d459_1
  intel-openmp       conda-forge/win-64::intel-openmp-2021.2.0-h57928b3_616
  libblas            conda-forge/win-64::libblas-3.9.0-8_mkl
  libcblas           conda-forge/win-64::libcblas-3.9.0-8_mkl
  liblapack          conda-forge/win-64::liblapack-3.9.0-8_mkl
  mkl                conda-forge/win-64::mkl-2020.4-hb70f87d_311
  numpy              conda-forge/win-64::numpy-1.19.5-py36hd1b969e_1
  pip                conda-forge/noarch::pip-21.0.1-pyhd8ed1ab_0
  python             conda-forge/win-64::python-3.6.13-h39d44d4_0_cpython
  python_abi         conda-forge/win-64::python_abi-3.6-1_cp36m
  setuptools         conda-forge/win-64::setuptools-49.6.0-py36ha15d459_3
  vc                 conda-forge/win-64::vc-14.2-hb210afc_4
  vs2015_runtime     conda-forge/win-64::vs2015_runtime-14.28.29325-h5e1d092_4
  wheel              conda-forge/noarch::wheel-0.36.2-pyhd3deb0d_0
  wincertstore       conda-forge/win-64::wincertstore-0.2-py36ha15d459_1006



Downloading and Extracting Packages
intel-openmp-2021.2. | 2.6 MB    | ########## | 100%
mkl-2020.4           | 172.4 MB  | ########## | 100% 
pip-21.0.1           | 1.1 MB    | ########## | 100% 
certifi-2020.12.5    | 144 KB    | ########## | 100% 
libblas-3.9.0        | 3.9 MB    | ########## | 100% 
numpy-1.19.5         | 4.9 MB    | ########## | 100% 
vs2015_runtime-14.28 | 2.3 MB    | ########## | 100% 
python-3.6.13        | 19.0 MB   | ########## | 100% 
vc-14.2              | 13 KB     | ########## | 100% 
python_abi-3.6       | 4 KB      | ########## | 100% 
liblapack-3.9.0      | 3.9 MB    | ########## | 100% 
wincertstore-0.2     | 15 KB     | ########## | 100% 
libcblas-3.9.0       | 3.9 MB    | ########## | 100% 
wheel-0.36.2         | 31 KB     | ########## | 100% 
setuptools-49.6.0    | 921 KB    | ########## | 100% 
Preparing transaction: ...working... done
Verifying transaction: ...working... done
Executing transaction: ...working... done
#
# To activate this environment, use
#
#     $ conda activate r-reticulate
#
# To deactivate an active environment, use
#
#     $ conda deactivate

* Miniconda has been successfully installed at "C:/Users/zzu/AppData/Local/r-miniconda".
Error in runUMAP(Similarity, min.dist = 0.3, n.neighbors = k) : 
  Cannot find UMAP, please install through pip (e.g. pip install umap-learn or reticulate::py_install(packages = 'umap-learn')).
> 
image.png
> reticulate::py_install(packages = 'umap-learn')
Collecting package metadata (current_repodata.json): ...working... done
Solving environment: ...working... done

## Package Plan ##

  environment location: C:\Users\zzu\AppData\Local\r-miniconda\envs\r-reticulate

  added / updated specs:
    - python
    - umap-learn


The following packages will be downloaded:

    package                    |            build
    ---------------------------|-----------------
    joblib-1.0.1               |     pyhd8ed1ab_0         206 KB  conda-forge
    llvmlite-0.36.0            |   py36haecd60e_0        15.1 MB  conda-forge
    m2w64-gcc-libgfortran-5.3.0|                6         342 KB  conda-forge
    m2w64-gcc-libs-5.3.0       |                7         520 KB  conda-forge
    m2w64-gcc-libs-core-5.3.0  |                7         214 KB  conda-forge
    m2w64-gmp-6.1.0            |                2         726 KB  conda-forge
    m2w64-libwinpthread-git-5.0.0.4634.697f757|                2          31 KB  conda-forge
    msys2-conda-epoch-20160418 |                1           3 KB  conda-forge
    numba-0.53.1               |   py36h79ea69f_0         3.7 MB  conda-forge
    pynndescent-0.5.2          |     pyh44b312d_0          43 KB  conda-forge
    scikit-learn-0.24.1        |   py36h63cef00_0         6.4 MB  conda-forge
    scipy-1.5.3                |   py36h7ff6e69_0        21.9 MB  conda-forge
    tbb-2020.2                 |       h2d74725_4         175 KB  conda-forge
    threadpoolctl-2.1.0        |     pyh5ca1d4c_0          15 KB  conda-forge
    umap-learn-0.5.1           |   py36ha15d459_0         123 KB  conda-forge
    zlib-1.2.11                |    h62dcd97_1010         126 KB  conda-forge
    ------------------------------------------------------------
                                           Total:        49.6 MB

The following NEW packages will be INSTALLED:

  joblib             conda-forge/noarch::joblib-1.0.1-pyhd8ed1ab_0
  llvmlite           conda-forge/win-64::llvmlite-0.36.0-py36haecd60e_0
  m2w64-gcc-libgfor~ conda-forge/win-64::m2w64-gcc-libgfortran-5.3.0-6
  m2w64-gcc-libs     conda-forge/win-64::m2w64-gcc-libs-5.3.0-7
  m2w64-gcc-libs-co~ conda-forge/win-64::m2w64-gcc-libs-core-5.3.0-7
  m2w64-gmp          conda-forge/win-64::m2w64-gmp-6.1.0-2
  m2w64-libwinpthre~ conda-forge/win-64::m2w64-libwinpthread-git-5.0.0.4634.697f757-2
  msys2-conda-epoch  conda-forge/win-64::msys2-conda-epoch-20160418-1
  numba              conda-forge/win-64::numba-0.53.1-py36h79ea69f_0
  pynndescent        conda-forge/noarch::pynndescent-0.5.2-pyh44b312d_0
  scikit-learn       conda-forge/win-64::scikit-learn-0.24.1-py36h63cef00_0
  scipy              conda-forge/win-64::scipy-1.5.3-py36h7ff6e69_0
  tbb                conda-forge/win-64::tbb-2020.2-h2d74725_4
  threadpoolctl      conda-forge/noarch::threadpoolctl-2.1.0-pyh5ca1d4c_0
  umap-learn         conda-forge/win-64::umap-learn-0.5.1-py36ha15d459_0
  zlib               conda-forge/win-64::zlib-1.2.11-h62dcd97_1010



Downloading and Extracting Packages
Downloading and Extracting Packages
m2w64-gcc-libs-5.3.0 | 520 KB    | ########## | 100% 
scipy-1.5.3          | 21.9 MB   | ########## | 100% 
zlib-1.2.11          | 126 KB    | ########## | 100% 
scikit-learn-0.24.1  | 6.4 MB    | ########## | 100% 
threadpoolctl-2.1.0  | 15 KB     | ########## | 100% 
numba-0.53.1         | 3.7 MB    | ########## | 100% 
m2w64-libwinpthread- | 31 KB     | ########## | 100% 
pynndescent-0.5.2    | 43 KB     | ########## | 100% 
msys2-conda-epoch-20 | 3 KB      | ########## | 100% 
tbb-2020.2           | 175 KB    | ########## | 100% 
joblib-1.0.1         | 206 KB    | ########## | 100% 
umap-learn-0.5.1     | 123 KB    | ########## | 100% 
llvmlite-0.36.0      | 15.1 MB   | ########## | 100% 
m2w64-gcc-libs-core- | 214 KB    | ########## | 100% 
m2w64-gcc-libgfortra | 342 KB    | ########## | 100% 
m2w64-gmp-6.1.0      | 726 KB    | ########## | 100% 
Preparing transaction: ...working... done
Verifying transaction: ...working... done
Executing transaction: ...working... done
> 
image.png
image.png
> cellchat <- netEmbedding(cellchat, type = "functional")
Manifold learning of the signaling networks for a single dataset 
C:\Users\zzu\AppData\Local\R-MINI~1\envs\R-RETI~1\lib\site-packages\umap\umap_.py:133: UserWarning: A large number of your vertices were disconnected from the manifold.
Disconnection_distance = 1 has removed 142 edges.
It has fully disconnected 3 vertices.
You might consider using find_disconnected_points() to find and remove these points from your data.
Use umap.utils.disconnected_vertices() to identify them.
  f"A large number of your vertices were disconnected from the manifold.\n"
> #> Manifold learning of the signaling networks for a single dataset
> cellchat <- netClustering(cellchat, type = "functional")
Classification learning of the signaling networks for a single dataset 
Error in do_one(nmeth) : 外接函数调用时不能有NA/NaN/Inf(arg1)
> #> Classification learning of the signaling networks for a single dataset
> # Visualization in 2D-space
> netVisual_embedding(cellchat, type = "functional", label.size = 3.5)
Error in data.frame(x = Y[, 1], y = Y[, 2], Commun.Prob. = prob_sum/max(prob_sum),  : 
  arguments imply differing number of rows: 13, 0
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

  • 今天感恩节哎,感谢一直在我身边的亲朋好友。感恩相遇!感恩不离不弃。 中午开了第一次的党会,身份的转变要...
    余生动听阅读 13,596评论 0 11
  • 彩排完,天已黑
    刘凯书法阅读 9,775评论 1 3
  • 表情是什么,我认为表情就是表现出来的情绪。表情可以传达很多信息。高兴了当然就笑了,难过就哭了。两者是相互影响密不可...
    Persistenc_6aea阅读 127,588评论 2 7

友情链接更多精彩内容