一个非常好用的data pipeline管理工具 airflow

最近在How一直想建立起非常专业的data pipeline系统,然后没有很多时间,这几个礼拜正好app上线,有时间开始建立自己的 data pipeline,能够很好的做每天的数据导入,数据收集,以及数据分析。

什么是ETL

ETL 是常用的数据处理,在以前的公司里,ETL 差不多是数据处理的基础,要求非常稳定,容错率高,而且能够很好的监控。ETL的全称是 Extract,Transform,Load, 一般情况下是将乱七八糟的数据进行预处理,然后放到储存空间上。可以是SQL的也可以是NoSQL的,还可以直接存成file的模式。

一开始我的设计思路是,用几个cron job和celery来handle所有的处理,然后将我们的log文件存在hdfs,还有一些数据存在mysql,大概每天跑一次。核心是能够scale,稳定,容错,roll back。我们的data warehouse就放在云上,就简单处理了。

有了自己的ETL系统我觉得就很安心了,以后能够做数据处理和机器学习方面就相对方便一些。

问题来了

一开始我设计的思路和Uber一开始的ETL很像,因为我觉得很方便。但是我发觉一个很严重的问题,我一个人忙不过来。首先,要至少写个前端UI来监控cron job,但是市面上的都很差。其次,容错的autorestart写起来很费劲,可能是我自己没有找到一个好的处理方法。最后部署的时候相当麻烦,如果要写好这些东西,我一个人的话要至少一个月的时间,可能还不是特别robust。在尝试写了2两天的一些碎片处理的脚本之后我发觉时间拖了实在太久了。

隆重推荐的工具

airbnb是我很喜欢的公司,他们有很多开源的工具,airflow我觉得是最实用的代表。airflow 是能进行数据pipeline的管理,甚至是可以当做更高级的cron job 来使用。现在一般的大厂都不说自己的数据处理是ETL,美其名曰 data pipeline,可能跟google倡导的有关。airbnb的airflow是用python写的,它能进行工作流的调度,提供更可靠的流程,而且它还有自带的UI(可能是跟airbnb设计主导有关)。话不多说,先放两张截图:

Paste_Image.png
Screen-Shot-2015-06-02-at-10.09.23-AM.png

什么是DAG

airflow里最重要的一个概念是DAG。

DAG是directed asyclic graph,在很多机器学习里有应用,也就是所谓的有向非循环。但是在airflow里你可以看做是一个小的工程,小的流程,因为每个小的工程里可以有很多“有向”的task,最终达到某种目的。在官网中的介绍里说dag的特点:

  • Scheduled: each job should run at a certain scheduled interval
  • Mission critical: if some of the jobs aren’t running, we are in trouble
  • Evolving: as the company and the data team matures, so does the data processing
  • Heterogenous: the stack for modern analytics is changing quickly, and most companies run multiple systems that need to be glued together

YEAH! It's awesome, right? After reading all of these, I found it was perfectly fit How.

如何安装

安装airflow超级简单,使用pip就可以,现在airflow的版本是1.6.1,但是有个小的bug,这个之后会告诉大家如何修改。

pip install airflow

这里有个坑,因为airflow涉及到很多数据处理的包,所以会安装pandas和numpy(这个Data Scientist应该都很熟悉)但是国内pip install 安装非常慢,用douban的源也有一些小的问题。我的解决方案是,直接先用豆瓣的源安装numpy 和 pandas,然后再安装airflow,自动化部署的时候可以在requirements.txt 里调整顺序就行了

如何运行

摘自官方网站

# airflow needs a home, ~/airflow is the default,
# but you can lay foundation somewhere else if you prefer
# (optional)
export AIRFLOW_HOME=~/airflow

# install from pypi using pip
pip install airflow

# initialize the database
airflow initdb

# start the web server, default port is 8080
airflow webserver -p 8080

然后你就可以上web ui查看所有的dags,来监控你的进程。

如何导入dag

一般第一次运行之后,airflow会在默认文件夹下生成airflow文件夹,然后你只要在里面新建一个文件dag就可以了。我这边部署在阿里云上的文件tree大概是这个样子的。

Paste_Image.png

以下是我自己写的我们公司How里需要每天处理log的其中一个小的dag:

from airflow import DAG
from airflow.operators import BashOperator
from datetime import datetime, timedelta
import ConfigParser


config = ConfigParser.ConfigParser()
config.read('/etc/conf.ini')
WORK_DIR = config.get('dir_conf', 'work_dir')
OUTPUT_DIR = config.get('dir_conf', 'log_output')
PYTHON_ENV = config.get('dir_conf', 'python_env')

default_args = {
    'owner': 'airflow',
    'depends_on_past': False,
    'start_date': datetime.today() - timedelta(days=1),
    'retries': 2,
    'retry_delay': timedelta(minutes=15),
}

dag = DAG('daily_process', default_args=default_args, schedule_interval=timedelta(days=1))

templated_command = "echo 'single' | {python_env}/python {work_dir}/mr/LogMR.py"\
    .format(python_env=PYTHON_ENV, work_dir=WORK_DIR) + " --start_date {{ ds }}"


task = BashOperator(
    task_id='process_log',
    bash_command=templated_command,
    dag=dag
)

写好之后,只要将这个dag放入之前建立好的dag文件夹,然后运行:

python <dag_file>

来确保没有语法错误。在测试里你可以看到我的

schedule_interval=timedelta(days=1)

这样我们的数据处理的任务就相当于每天跑一次。更重要的是,airflow还提供处理bash处理的接口外还有hadoop的很多接口。可以为以后连接hadoop系统提供便利。很多具体的功能可以看官方文档。

其中的一个小的bug

airflow 1.6.1有一个网站的小的bug,安装成功后,点击dag里的log会出现以下页面:

Paste_Image.png

这个只要将

airflow/www/utils.py 

文件替换成最新的airflow github上的utils.py文件就行,具体的问题在这个:

fixes datetime issue when persisting logs

使用supervisord进行deamon

airflow本身没有deamon模式,所以直接用supervisord就ok了,我们只要写4行代码。

[program:airflow_web]
command=/home/kimi/env/athena/bin/airflow webserver -p 8080

[program:airflow_scheduler]
command=/home/kimi/env/athena/bin/airflow scheduler

我觉得airflow特别适合小的团队,他的功能强大,而且真的部署方便。和hadoop,mrjob又可以无缝连接,对我们的业务有很大的提升。

大家如果对我们公司有很大兴趣,公司正在大力扩招中,特别希望优秀的Data Scientist来我们公司报道。如果有兴趣的话,可以看一下我们的招聘或者直接发我的邮件hr@prettyyes.com

https://www.jianshu.com/p/b296d8271f4c

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,884评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,347评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,435评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,509评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,611评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,837评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,987评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,730评论 0 267
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,194评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,525评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,664评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,334评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,944评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,764评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,997评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,389评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,554评论 2 349

推荐阅读更多精彩内容