【三九同行1077】(12.07):Bancor算法(二)

微信图片_20181005125538.png

写在前面

格式化上一篇文章【三九同行1079】(12.05):Bancor算法(一)讲了ICO的缺陷,讲了BM通过Bancor算法很好的解决这些问题。还讲了Bancor算法的起源,Bancor算法的基本原理。在文章最后,格式化讲了Bancor算法的计算公式。

Bancor算法的计算公式:Price=Balance/(Supply×CW)

其中:

Price为新币的发币初始价格;

Balance为储备金余额;

Supply为新币的供应量;

CW:储备金固定比率,储备金率为[0,1]。

发币举例

格式化准备抵押5000个EOS发行10000个GSH,储备金率为0.5。

根据公式化Price=Balance/(Supply*CW),每个GSH币的发币价格为:1EOS。

买入/卖出后GSH的价格

发完币后,没有人买入或卖出代币,GSH币的价格不变,即Price=1EOS。如果有人买入或卖出,其价格应该由什么决定?

GSH的价格不是由市场买卖双方决定,而是由抵押池的抵押币数量和代币池的代币数量决定,即Price=抵押池的抵押币数量/(代币池的代币数量×CW )=Balance余/(Supply余 ×CW)。

当张三用A个EOS买入B个GSH后,GSH的价格为: Price余1=Balance余/(Supply余×CW)=(Balance0+A)/((Supply0-B)×CW)。Balance0 代表买入前抵押池的抵押量,Supply0 代表买入前代币池里的代币量。也就是说,每买入一笔GSH,会让GSH币价格上涨。

当李四卖出B个GSH换成A个EOS后,GSH的价格为: Price余2=Balance余/(Supply余×CW)=(Balance0-A)/((Supply0+B)×CW)。Balance0 代表卖出前抵押池的抵押量,Supply0 代表卖出前代币池里的代币量。也就是说,每卖出一笔GSH,会让GSH币价格下跌。

买币举例

张三是第一个购买GSH代币的,他打算用1000EOS购买GSH,他能购买多少个GSH?交易价格为多少?

【第一种方式】假设是一次性买入

张三一次性用1000EOS购买GSH,并使用交易前的GSH价格进行交易。

于是交易前GSH代币价格为1EOS,即为交易价格,张三能购买1000个GSH。这是最简单的计算公式。

【第二种方式】假设是一次性买入

张三一次性用1000EOS购买GSH,并根据实际交易数量的动态GSH价格进行交易,即不同交易数量,交易价格不同。

交易后GSH代币价格为:Price余1=(Balance0+A)/((Supply0-B)×CW)=(5000+1000)/((10000-1000/Price余1)×0.5)

Price余1 =1.3EOS,可购买769个GSH。

请问【第一种方式】与【第二种方式】哪一种更合理?

同样都是Bancor算法,【第一种方式】对购买者有利,【第二种方式】对项目方有利。

显然项目方不会选择使用【第一种方式】 。如果说项目方使用【第二种方式】,购买者渐渐的就会发现,分多次购买比一次性购买的价位更低。

于是,完美的Bancor算法即不使用【第一种方式】,也不使用【第二种方式】,而是把一次交易切成无限小份金额进行交易,然后求积分。我们知道当交易金额无限小的时候,【第一种方式】和【第二种方式】相等。

于是就有了以下公式:

购买量=Supply0 × ((1+A/Balance0)^CW-1)

于是购买GSH的数量为:购买数量=Supply0 × ((1+A/Balance0)^CW-1)=10000 × ((1+1000/5000)^0.5-1)=954

即张三用1000个EOS购买了954个GSH,每个GSH的价格为:1.048EOS。

(续...)

【最后格式化祝你在投资道路上遇见更好的自己!】

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,928评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,192评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,468评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,186评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,295评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,374评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,403评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,186评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,610评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,906评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,075评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,755评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,393评论 3 320
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,079评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,313评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,934评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,963评论 2 351

推荐阅读更多精彩内容