《白话深度学习与Tensorflow》学习笔记(7)RBM限制玻尔兹曼机

不受限的:在实际工程中用处不大,所以目前只需要研究受限玻尔兹曼机。

一层是可视化层,一般来说是输入层,另一层是隐含层,也就是我们一般指的特征提取层。

RBM是可以多层叠加在一起的。


上面的h1到hn是n个实数,下面的v1到vm是m个实数,都是0到1之间的数字,它们各自组成了一个h向量和一个v向量。

逻辑回归:其实这是一个伯努利分布(二项分布)的演化,正例概率是p,负例为1-p。

令s=P/1-p  t=ln(s).




f(x)就是1产生的概率p,x就是这个多维向量。

逻辑回归的损失函数:


最大似然度:有一个未知参数向量,这是一种条件描述。观测对象数据用x来表示,在观测过程中x会有一定的概率分布。

未知向量

如果你观测到一个正态分布,那么P(x)就表示为


最大似然:一个连乘关系的最大值可以根据取对数后找到极大值的点。

对于完整的X=wTx,x1到xn叫做“解释变量”,而u叫做随机扰动项,是在随机过程中的一种不确定的值,且这个u也是服从正太分布的。

3sigma准则。

损失函数:

RBM的损失函数是CD(contrasive divergence对比散度)学习目标是最大似然度 让网络学习到一个矩阵,使得网络中拟合的概率“全局性”最大。

RBM的能量模型:



就是参数w,c,b后面的能量表示:一个是权重w连接两侧节点的v和h产生的,必须三个都为1才算有能量的输出;另外两个则是节点上的偏置和节点输入的向量维度值相乘,也必须都为1才算有能量的输出。

通过最大化这个P(v)(取其对数的值)对于对比散度,只利用这两个式子,然后让向量在这个网络的两侧不断反弹,吃书画网络权重w,用一个向量v通过网络映射来得到h,然后是第一次反弹,用h通过网络反过来生成v’;然后是第二次反弹,用这个v’通过网络生成h’。然后根据L函数的导数来更新w。

能量模型的意义:

[if !supportLists]第一、[endif]RBM网络是一种无监督学习的方法,无监督学习的目的是最大可能的拟合输入数据,所以学习RBM网络的目的是让RBM网络最大可能地拟合输入数据。

[if !supportLists]第二、[endif]能量模型能为无监督学习方法提供两个东西:a)目标函数;b)目标解。

[if !supportLists]第三、[endif]任何概率分布都可以转变成基于能量的模型,而且很多的分布都可以利用能量模型的特有的性质和学习过程,有些甚至从能量模型中找到了通用的学习方法。

能量模型需要两个东西,一个是能量函数,另一个是概率,有了概率才能跟要求解的问题联合起来。

深度学习中可以由多个RBM叠加而成。

应用:分类问题,降维可进行串并联的使用,也就是通过多个RBM模型来形成一个完整的工作网络。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容