Learning to Learn for Global Optimization of Black Box Functions

Yutian Chen
Matthew W. Hoffman
Sergio Gomez Cólmenarejo
Misha Denil
Timothy P. Lillicrap
Nando de Freitas

all from DeepMind

We present a learning to learn approach for training recurrent neural networks to perform black-box global optimization.

In the meta-learning phase we use a large set of smooth target functions to learn a recurrent neural network (RNN) optimizer, which is either a long-short term memory network or a differentiable neural computer.

After learning, the RNN can be applied to learn policies in reinforcement learning, as well as other black-box learning tasks, including continuous correlated bandits and experimental design.

We compare this approach to Bayesian optimization, with emphasis on the issues of computation speed, horizon length, and exploration-exploitation trade-offs.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 什么是优秀员工? 热爱并专注于自己的工作,并且能够不断的提升自己的技能。 乐于思考,能够站在客户的角度想问题。思考...
    一缕烟火0阅读 150评论 0 0
  • 跟朋友聊天,说到父母不信任自己什么的,又有一点感触。 其实我对我父母的态度很复杂,有时候觉得自己有这样的父母很幸福...
    青年A阅读 166评论 0 0
  • Node.js 应用是由以下3部分组成:1.引入 required 模块:我们可以使用 require 指令来载入...
    点映文艺阅读 158评论 0 0