数据说明:
GrADS格式二进制数据,存储单要素单独时间二维水平场数据,一共有15个,记作member0-member14
Python代码
import cartopy.crs as ccrs
from cartopy.mpl.geoaxes import GeoAxes
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import AxesGrid
import matplotlib as mpl
import numpy as np
lats=np.linspace(15,65,501)
lons=np.linspace(70,145,751) #获得纬度、经度数值
#get lats and lons
enum=("00","01","02","03","04","05","06","07","08","09","10","11","12","13","14")
#数据成员编号
#
fcst="012" #预报时长
expset="after" #after or before #文件夹后缀
prefix="../bin/2020010712_"+expset+"/cr_srf_2020010712" #数据文件前缀
title="cr_"+expset+"_stamp_"+fcst+"hr" #图形标题
fileformat="png" #图形保存格式
savefile="cr_stamp_"+fcst+"_"+expset+"."+fileformat #图形保存名称
projection = ccrs.PlateCarree() #投影方式
axes_class = (GeoAxes,dict(map_projection=projection)) #建立坐标系
fig = plt.figure(figsize=[12,8]) #建立画布,注意figsize设置大些可以防止多图重叠
axgr = AxesGrid(fig, 111, axes_class=axes_class,
nrows_ncols=(5, 3), #5行3列
axes_pad=(0.4,0.2), #水平间距,垂直间距
cbar_location='right', #色标位置(在右侧)
cbar_mode='single',
cbar_pad=0.05,
cbar_size='2%',
label_mode='')
my_map=mpl.colors.ListedColormap(['white','dodgerblue', 'cyan','lightgreen','green','yellow','tan','orange','darkorange','red','crimson','fuchsia','purple'])
#色标颜色
#my_map.set_over('lavender')
#my_map.set_under('white')
bounds=[0,10,15,20,25,30,35,40,45,50,55,60,65,70]
#色标对应取值区间,区间值数=色标数+1,b[0] c[0] b[1]
my_norm=mpl.colors.BoundaryNorm(bounds,my_map.N)
#建立色标和取值的对应索引
for i, ax in enumerate(axgr):
f=np.fromfile(prefix+fcst+"00_run"+enum[i]+".grd",dtype=np.float32)
#获取文件中的数据
f=f.reshape(501,751)
#变形成二维列表,注意与fortran的不同(Python为行优先)
ax.coastlines(resolution='110m')
#绘制粗精度海岸线
if (i==0 or i==3 or i==6 or i==9 or i==12 ):
ax.set_yticks(np.linspace(15, 65, 6), crs=projection)
if (i==12 or i==13 or i==14 ):
ax.set_xticks(np.linspace(70, 145, 4), crs=projection)
#保留必要的坐标标签
lon_formatter = LongitudeFormatter(zero_direction_label=True)
lat_formatter = LatitudeFormatter()
ax.xaxis.set_major_formatter(lon_formatter)
ax.yaxis.set_major_formatter(lat_formatter)
#坐标值格式
p = ax.contourf(lons, lats,f,bounds,transform=projection,norm=my_norm,cmap=my_map)
#绘制图形
ax.text(90,58,'member'+str(i))
#增加图形编号(90,58 为图形坐标,这里也即经纬度)
plt.colorbar(p,cax=axgr.cbar_axes[0],ticks=bounds) #绘制色标
fig.suptitle(title,x=0.5,y=0.925) #整张拼图标题
#plt.savefig(savefile, dpi=600,bbox_inches="tight") #保存图片
plt.show() #显示图片
最终结果如下