JVM详解,一篇文章带你入门

我们知道java语言是跨平台的,一处编译,到处运行。一处编译就是将java文件编译成.class字节码文件。

只要编译的字节码文件符合jvm的规范,那么就可以在java虚拟机上运行,这也说明了它的语言无关性。

那么什么是JVM?

JVM是Java Virtual Machine(Java虚拟机)的缩写,是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java虚拟机主要由字节码指令集、寄存器、栈、垃圾回收堆和存储方法域等构成。 JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台上不加修改地运行。JVM在执行字节码时,实际上最终还是把字节码解释成具体平台上的机器指令执行。

JVM的生命周期

JVM伴随Java程序的开始而开始,程序的结束而停止。一个Java程序会开启一个JVM进程,一台计算机上可以运行多个程序,也就可以运行多个JVM进程。

要先了解JVM内存模型,

首先要理解class文件的基本结构

image.png

文件以CA FE BA BE开始,后面紧跟的是minor version小版本号,major version大版本号,

constant_poop_count常量池数量,后面紧跟的就是常量池内容

access flags代表的是位运算

this_class、super class是class的信息

interface count是接口数量

interfaces是相关接口的信息

field_count是属性数量

fields是属性信息

methods_count是方法数量

method_info是相关方法信息

attribute_count是属性数量

attribute是相关属性信息(包含预定义属性,也可以是自定义信息)

其次总体把握JVM的运行原理,如图

image.png

程序计数器(线程私有):
是当前线程锁执行字节码的行号计时器,每条线程都有一个独立的程序计数器,这类内存也称为“线程私有”的内存。正在执行java方法的话,计数器记录的是虚拟机字节码指令的地址(当前指令的地址)。如果是Native方法,则为空。

java 虚拟机栈(线程私有)
也是线程私有的。
每个方法在执行的时候也会创建一个栈帧,存储了局部变量,操作数,动态链接,方法返回地址。
每个方法从调用到执行完毕,对应一个栈帧在虚拟机栈中的入栈和出栈。
通常所说的栈,一般是指在虚拟机栈中的局部变量部分。
局部变量所需内存在编译期间完成分配,
如果线程请求的栈深度大于虚拟机所允许的深度,则StackOverflowError。
如果虚拟机栈可以动态扩展,扩展到无法申请足够的内存,则OutOfMemoryError。

本地方法栈(线程私有)
和虚拟机栈类似,主要为虚拟机使用到的Native方法服务。也会抛出StackOverflowError 和OutOfMemoryError。

Java堆(线程共享)
被所有线程共享的一块内存区域,在虚拟机启动的时候创建,用于存放对象实例。
对可以按照可扩展来实现(通过-Xmx 和-Xms 来控制)
当队中没有内存可分配给实例,也无法再扩展时,则抛出OutOfMemoryError异常。

堆内存可以分为两个部分:年轻代和老年代。下图中的Perm代表的是永久代,但是注意永久代并不属于堆内存中的一部分,同时jdk1.8之后永久代也将被移除。


image.png

方法区(线程共享)
被所有方法线程共享的一块内存区域。
用于存储已经被虚拟机加载的类信息,常量,静态变量等。
这个区域的内存回收目标主要针对常量池的回收和堆类型的卸载。

对象的创建过程

1.classloading

2.classlinking(verification,preparation,resolution)

verification:验证

preparation:准备,静态变量赋默认值

resolution:解析

3.classinitializing:初始化;静态变量赋初始值,执行静态代码块

4.申请对象内存

5.成员变量赋默认值

6.调用构造方法(init)

a.成员变量顺序赋初始值

b.执行构造方法语句:先调用super()

一个完整对象包含:对象头,对象体和对齐字节

其中对象头包含的内容

image.png

可以看到存放分代年龄是4bit,所以1.8默认的PS+PO垃圾回收器,默认的分代年龄最大是15,即是由此而来

既然说到GC,垃圾回收器

那么什么是垃圾?

没有任何一个引用指向的一个或多个对象(循环引用)

如何定位垃圾?
引用计数法(ReferenceCount)
根可达算法(RootSearching)

常见的垃圾回收算法
标记清除(mark sweep)--位置不连续,产生碎片,效率偏低(两遍扫描)
拷贝算法(copying)--没有碎片,浪费空间
标记压缩(mark compact)--没有碎片,效率偏低(两遍扫描,指针需要调整)

JVM内存分代模型(用于分代垃圾回收算法)

常见的垃圾回收器

image.png
  1. JDK诞生 Serial追随 提高效率,诞生了PS,为了配合CMS,诞生了PN,CMS是1.4版本后期引入,CMS是里程碑式的GC,它开启了并发回收的过程,

但是CMS毛病较多,因此目前任何一个JDK版本默认是CMS 并发垃圾回收是因为无法忍受STW

  1. Serial 年轻代 串行回收

  2. PS 年轻代 并行回收

  3. ParNew 年轻代 配合CMS的并行回收

  4. SerialOld

  5. ParallelOld

  6. ConcurrentMarkSweep 老年代 并发的, 垃圾回收和应用程序同时运行,降低STW的时间(200ms) CMS问题比较多,所以现在没有一个版本默认是CMS,只能手工指定 CMS既然是MarkSweep,就一定会有碎片化的问题,碎片到达一定程度,CMS的老年代分配对象分配不下的时候,使用SerialOld 进行老年代回收

想象一下:

PS + PO -> 加内存 换垃圾回收器 -> PN + CMS + SerialOld(几个小时 - 几天的STW)

几十个G的内存,单线程回收 -> G1 + FGC 几十个G -> 上T内存的服务器 ZGC

算法:三色标记 + Incremental Update

  1. G1(10ms)

算法:三色标记 + SATB

  1. ZGC (1ms) PK C++

算法:ColoredPointers + LoadBarrier

  1. Shenandoah

算法:ColoredPointers + WriteBarrier

  1. Eplison:调试用的多

  2. 垃圾收集器跟内存大小的关系

    1. Serial 几十兆

    2. PS 上百兆 - 几个G

    3. CMS - 20G

    4. G1 - 上百G

    5. ZGC - 4T - 16T(JDK13)

常见垃圾回收器组合参数设定(JDK 1.8)

  • -XX:+UseSerialGC = Serial New (DefNew) + Serial Old
    • 小型程序。默认情况下不会是这种选项,HotSpot会根据计算及配置和JDK版本自动选择收集器
  • -XX:+UseParNewGC = ParNew + SerialOld
    • 这个组合已经很少用(在某些版本中已经废弃)
  • -XX:+UseConc (urrent)MarkSweepGC = ParNew + CMS + Serial Old
  • -XX:+UseParallelGC = Parallel Scavenge + Parallel Old (1.8默认) 【PS + SerialOld】
  • -XX:+UseParallelOldGC = Parallel Scavenge + Parallel Old
  • -XX:+UseG1GC = G1
  • Linux中没找到默认GC的查看方法,而windows中会打印UseParallelGC
    • java +XX:+PrintCommandLineFlags -version
    • 通过GC的日志来分辨
  • Linux下1.8版本默认的垃圾回收器到底是什么?
    • 1.8.0_181 默认(看不出来)Copy MarkCompact
    • 1.8.0_222 默认 PS + PO

调优前的基础概念
1.吞吐量:
用户代码时间 / (用户代码时间+垃圾回收时间)
2.响应时间:
STW越短,响应时间越好
所谓调优
首先确定追求啥?吞吐量优先,还是响应时间优先?还是在满足一定的响应时间的情况下,要求达到多大的吞吐量...
什么是调优?
1.根据需求进行JVM规划和预调优
2.优化运行JVM运行环境(慢,卡顿)
3.解决JVM运行过程中出现的各种问题(OOM)

到此为止,如果都理解,那么JVM应该是可以简单入门了,至于更详细的执行原理,不同垃圾回收器的垃圾回收算法等等,请听下回分解咯O(∩_∩)O

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,233评论 6 495
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,357评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,831评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,313评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,417评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,470评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,482评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,265评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,708评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,997评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,176评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,503评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,150评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,391评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,034评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,063评论 2 352

推荐阅读更多精彩内容