线性规划 (一) 线性规划的基本形式及各种概念

  在最优化中,目标函数和约束函数皆为线性函数的优化问题称为线性规划(LP),它是相对简单的最优化问题。

标准形式

  • 线性规划

  如下形式的线性规划记2-1
\left.\begin{array}{ll}{\min \sum_{j=1}^{n} c_{j} x_{j}} \\ {\text { s.t. } \sum_{j=1}^{n} a_{i j} x_{j}=b_{i},} & {i=1,2, \cdots, m} \\ {x_{j} \geq 0,} & {j=1,2, \cdots, n}\end{array}\right\}

  称为线性规划的标准形式。其中c_{j}称为价格系数b_{i}称为右端项

  采用向量-矩阵表示法,标准形式可以简写为如下形式,记为2-2:

\left.\begin{array}{c}{\min c^{T} x} \\ {\text {s.t. } A x=b} \\ {x \geq 0}\end{array}\right\}

  其中A=(a_{ij})_{m \times n}b=(b_{1}, \cdots, b_{m})^{T}c=(c_{1}, \cdots , c_{n})^{T}x=(x_{1},\cdots , x_{n})^{T}

  • 典范形式

  在下面进行理论分析时,经常把A看作由n个列向量构成的,即:

A=[a_{1},a_{2},\cdots ,a_{n}]

  其中第j列向量是a_{j}=[a_{1j},a_{2j},\cdots ,a_{mj}]^{T}。于是,2-2中的Ax=b可写成:

\sum_{j=1}^{n}x_{j}a_{j}=b

  若A中有m个列向量可以合并成单位矩阵,且b \geq 0,则此时的2-2称为线性规划的典范形式

一般形式化标准形

  对于一般形式的线性规划,比如标准形式中是求极小,而有时候给出的是求极大,所以我们需要将其化成标准形,然后对标准形做研究,得到通用的解法。

  那么实际问题中出现的非标准形式如何处理呢?有三个基本原则:

  • (1) 极大化极小

  如求max \sum_{j=1}^{n}c_{j}x_{j},可变为min \sum_{j=1}^{n}(-c_{j})x_{j}

  • (2) 松弛变量和剩余变量
      如约束中出现\leq,则在该约束中加上一个变量(称为松弛变量),并要求该变量非负;如出现\geq,则在该约束中减去一个变量(称为剩余变量)。

注意:新引入变量的价格系数全部设为零,因此目标函数中没有出现新变量。

  • (3) 自由变量
      以上讨论都考虑变量的取值是非负的。实际中,如果某些变量没有这种约束,也就是说,某些变量可以任意取值,那么这些变量称为自由变量。自由变量可以通过以下两种方法把它消除。
    • 第一种方法:引入两个非负变量x_{1}^{+}x_{1}^{-},令x_{1}=x_{1}^{+}-x_{1}^{-}。将其代入到线性规划的目标函数和约束函数中,自由变量 x_{1}就消除了。注意,求出新线性规划的最优点后,再利用x_{1}=x_{1}^{+}-x_{1}^{-}便可以定出x_{1}
    • 第二种方法:取一个包含x_{1}的等式约束,例如a_{i1}x_{1}+a_{i2}x_{2}+ \cdots + a_{im}x_{n}=b_{i}由此解出:
      x_{1}=\frac{b_{i}}{a_{i1}}-\frac{a_{i2}}{a_{i1}}x_{2} - \cdots - \frac{a_{in}}{a_{i1}}x_{n}

  第一种方法将增加变量的数目,导致问题的维数增大。第二种方法正好相反。

解的性质

  在介绍解的性质之前,先需要了解一下各种各样的解的概念。

  满足Ax=bx称为方程组Ax=b,而满足Ax=bx \geq 0x称为线性规划2-2的容许解。现在要定义一种特殊的容许解-基本容许解,而在介绍基本容许解之前需要介绍另一个概念:基。

定义:Am个线性无关列向量称为。基中的每个列向量称为基向量,而A中的其余列向量称为非基向量。由全体基向量合成的矩阵称为基矩阵,也简称为基。若基是单位矩阵,则称为标准基

定义: 在约束\sum_{j=1}^{n}x_{j}a_{j}=b中,确定一个基后,与基向量对应的变量称为基变量,与非基向量对应的变量称为非基变量

定义:x_{0}Ax=b的一个解。若它有m个分量所对应的A的列向量构成基B,而其余n-m个分量全部为0,则x_{0}称为约束Ax=b关于基B基本解。若x_{0}还满足x_{0} \geq 0x_{0}称为约束Ax=bx \geq 0关于基B基本容许解,也称为线性规划2-2关于基B的基本容许解。

  简单地说,在确定基之后,所有非基变量取值都为0的解是基本解,所有非基变量取值都为0的容许解是基本容许解

定义:B是2-2的一个基。若2-2存在关于B的基本容许解,则称B是2-2的容许基;否者称为非容许基。若容许基是单位矩阵,则称为标准容许基

  上述所涉及到的概念,总结如下,方便复习:

  • 容许解
  • 基向量
  • 非基向量
  • 基矩阵
  • 标准基
  • 基变量
  • 非基变量
  • 基本解
  • 基本容许解
  • 容许基
  • 非容许基
  • 标准容许基

定义: 若基本解中基变量的取值都不为0,则该解称为非退化的;否者称为退化的。若2-2的所有基本容许解都是非退化的,则线性规划2-2称为非退化的;否者称为退化的。

  若线性规划是非退化的,则容许基与其基本容许解是一一对应的。相反地,退化地基本容许解可能与多个容许基相对应,也就是说不同的容许基会有相同的容许解。

  • 基本容许解与极点地对应关系

  约束:
Ax=b, \ \ x \geq 0

  的基本容许解与这组约束所确定的容许集的极点在一定条件下是一一对应的。

定理:A是秩为mm \times n矩阵,D是由约束Ax=b, \ \ x \geq 0所确定的容许集,则XAx=b, \ \ x \geq 0的基本容许解的充要条件是xD的极点。

推论: 容许集D=\{x|Ax=b,x \geq 0\}的极点个数有限。其中假定A是秩为mm \times n矩阵。

  这里书上都有证明,这里我引用一位老师的话,定理都是证明给怀疑的人看的,如果你不怀疑,就不需要证明。如果你用过图解法。其实上面这个很好理解的。

定理: 线性规划若有容许解,则必有基本容许解。

定理: 线性规划若有最优解,则必有最优基本容许解。

我的微信公众号名称:深度学习与先进智能决策
微信公众号ID:MultiAgent1024
公众号介绍:主要研究分享深度学习、机器博弈、强化学习等相关内容!期待您的关注,欢迎一起学习交流进步!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,951评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,606评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,601评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,478评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,565评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,587评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,590评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,337评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,785评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,096评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,273评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,935评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,578评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,199评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,440评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,163评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,133评论 2 352

推荐阅读更多精彩内容