Hadoop官方文档翻译 —— MapReduce(二)

Reducer

Reduce处理一系列相同key的中间记录。

用户可以通过 Job.setNumReduceTasks(int) 来设置reduce的数量。

总的来说,通过 Job.setReducerClass(Class) 可以给 job 设置 recuder 的实现类并且进行初始化。框架将会调用 reduce 方法来处理每一组按照一定规则分好的输入数据,应用可以通过复写cleanup 方法执行任何清理工作。

Reducer有3个主要阶段:混洗、排序和reduce。

Shuffle(混洗)

输出到Reducer的数据都在Mapper阶段经过排序的。在这个阶段框架将通过HTTP从恰当的Mapper的分区中取得数据。

Sort(排序)

这个阶段框架将对输入到的 Reducer 的数据通过key(不同的 Mapper 可能输出相同的 key)进行分组。

混洗和排序阶段是同时进行;map的输出数据被获取时会进行合并。

Secondary Sort(二次排序)

如果想要对中间记录实现与 map 阶段不同的排序方式,可以通过Job.setSortComparatorClass(Class) 来设置一个比较器 。Job.setGroupingComparatorClass(Class) 被用于控制中间记录的排序方式,这些能用来进行值的二次排序。

Reduce

在这个阶段reduce方法将会被调用来处理每个已经分好的组键值对。

reduce 任务一般通过 Context.write(WritableComparable, Writable) 将数据写入到FileSystem。

应用可以使用 Counter 进行统计。

Recuder 输出的数据是不经过排序的。

How Many Reduces?

合适的 reduce 总数应该在 节点数*每个节点的容器数*0.95 至 节点数*每个节点的容器数*1.75 之间。

当设定值为0.95时,map任务结束后所有的 reduce 将会立刻启动并且开始转移数据,当设定值为1.75时,处理更多任务的时候将会快速地一轮又一轮地运行 reduce 达到负载均衡。

reduce 的数目的增加将会增加框架的负担(天花板),但是会提高负载均衡和降低失败率。

整体的规模将会略小于总数,因为有一些 reduce slot 用来存储推测任务和失败任务。

Reducer NONE

当没有 reduction 需求的时候可以将 reduce-task 的数目设置为0,是允许的。

在这种情况当中,map任务将直接输出到 FileSystem,可通过  FileOutputFormat.setOutputPath(Job, Path) 来设置。该框架不会对输出的 FileSystem 的数据进行排序。

Partitioner

Partitioner对key进行分区。

Partitioner 对 map 输出的中间值的 key(Recuder之前)进行分区。分区采用的默认方法是对 key 取 hashcode。分区数等于 job 的 reduce 任务数。因此这会根据中间值的 key 将数据传输到对应的 reduce。

HashPartitioner 是默认的的分区器。

Counter

计数器是一个工具用于报告 Mapreduce 应用的统计。

Mapper Reducer 实现类可使用计数器来报告统计值。

Hadoop Mapreduce 是普遍的可用的 Mappers、Reducers Partitioners 组成的一个库。

下面是原文


Reducer

Reducerreduces a set of intermediate values which share a key to a smaller set of values.

The number of reduces for the job is set by the user viaJob.setNumReduceTasks(int).

Overall,Reducer implementations are passed the Job for the job via theJob.setReducerClass(Class)method and can override it to initialize themselves. The framework then callsreduce(WritableComparable,Iterable, Context)method for each pair in the grouped inputs. Applications can then override the cleanup(Context)method to perform any required cleanup.

Reducer has 3 primary phases: shuffle, sort and reduce.

Shuffle

Input to the Reducer is the sorted output of the mappers. In this phase the framework fetches(取得)the relevant partition of the output of all the mappers, via HTTP.

Sort

The framework groups Reducer inputs by keys (since different mappers may have output the same key) in this stage(阶段).

The shuffle and sort phases occur simultaneously(同时); while map-outputs are being fetched they are merged.

Secondary Sort

If equivalence rules for grouping the intermediate keys are required to be different from those for grouping keys before reduction, then one may specify a Comparator viaJob.setSortComparatorClass(Class). SinceJob.setGroupingComparatorClass(Class)can be used to control how intermediate keys are grouped, these can be used in conjunction(协调)to simulate(模拟)secondary sort on values.

Reduce

In this phase the reduce(WritableComparable, Iterable, Context) method is called for each pair in the grouped inputs.

The output of the reduce task is typically written to theFileSystemvia  Context.write(WritableComparable, Writable).

Applications can use the Counter to report its statistics.

The output of the Reducer isnot sorted.

How Many Reduces?

The right number of reduces seems to be 0.95 or 1.75 multiplied(乘上)by(<no. of nodes> * <no. of maximum containers per node>).

With 0.95 all of the reduces can launch immediately(立刻)and start transferring map outputs as the maps finish. With 1.75 the faster nodes will finish their first round of reduces and launch a second wave(波浪)of reduces doing a much better job of load balancing(均衡).

Increasing the number of reduces increases the framework overhead(负担,天花板), but increases load balancing and lowers the cost of failures.

The scaling(规模)factors above are slightly(轻微的)less than whole numbers to reserve a few reduce slots in the framework for speculative(推测的)-tasks and failed tasks.

Reducer NONE

It is legal to set the number of reduce-tasks tozeroif no reduction is desired.

In this case the outputs of the map-tasks go directly to the FileSystem, into the output path set byFileOutputFormat.setOutputPath(Job,Path). The framework does not sort the map-outputs before writing them out to the FileSystem.

Partitioner

Partitionerpartitions the key space.

Partitioner controls the partitioning of the keys of the intermediate map-outputs. The key (or a subset(子集)of the key) is used to derive(取得;源自)the partition, typically by ahash function. The total number of partitions is the same as the number of reduce tasks for the job. Hence this controls which of them reduce tasks the intermediate key (and hence the record) is sent to for reduction.

HashPartitioneris the default Partitioner.

Counter

Counteris a facility for MapReduce applications to report its statistics.

Mapper and Reducer implementations can use the Counter to report statistics.

Hadoop MapReduce comes bundled with alibraryof generally(普遍的)useful mappers, reducers, and partitioners.

*由于翻译能力不足所出现的错误,请多多指出和包涵

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,080评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,422评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,630评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,554评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,662评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,856评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,014评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,752评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,212评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,541评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,687评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,347评论 4 331
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,973评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,777评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,006评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,406评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,576评论 2 349

推荐阅读更多精彩内容