想看两张脸合成一张脸的样子么,OpenCV 来帮你实现!

提了好几天的人脸融合技术,今天终于被提上日程,该技术是基于之前介绍的技术基础上延伸得到的,如果之前没有了解过这两篇文章,建议提前看下,
OpenCV-Python 绘制人脸 Delaunay 三角剖分(人脸识别核心技术之一)

1,Image Morphing 介绍

图像融合简单来说,通过把图像设置为不同的透明度,把两张图像融合为一张图像(一般要求图像需要是等尺寸大小的),公式如下:
M(x,y) = (1-\alpha)I(x,y)+\alpha J(x,y)\\ \alpha 为设置的透明度参数\\ I(x,y) 为图像 I 坐标为 (x,y) 的像素值;\\J(x,y)为图像 J 坐标为 (x,y) 的像素值;\\ M(x,y) 为融合之后图像的像素值;
2,Image Morphing 简单尝试

可以根据这个公式尝试实现一下融合技术,利用 OpenCV 的 cv2.addWeighted() 函数,代码如下:

import cv2
import  numpy as np

file_path1 = "E:/data_ceshi/1.jpg"
file_path2 = "E:/data_ceshi/2.jpg"
img1 = cv2.imread(file_path1)
img2 = cv2.imread(file_path2)
morph_img = cv2.addWeighted(img1,0.5,img2,0.5,0)
save_img = np.hstack((img1,morph_img,img2))
cv2.imwrite("E:/data_ceshi/save.jpg",save_img)
cv2.imshow("morph_img",save_img)
cv2.waitKey(0)

这里 alpha 设置为 0.5, 最终结果如下图:

save.jpg

左右两边分别为欲融合的两张图片,中间的为最终的融合结果,看起来非常不好,图片中脸的部分的确融合了一步分但是给我们的感觉就是明显的失真效果,太假了

以上对人脸进行融合之前,若想要达到不错的效果需要对人脸区域进行对齐操作,而这一步就需要用到之前介绍的技术:人脸68个特征点提取Delaunay 三角剖分

3,特征点提取

在做人脸对齐时,不仅需要考虑人脸部分需要对齐,这里也需要考虑图片的整体性(例如头发、脖子、肩膀等部位),因此这里除去 dlib 提取68个特征点之外,又加入了12个特征点(人工标记)分别图像四角、四边中点、是肩膀处,右耳边缘、脖子等

circle.jpg

4,Delaunay 三角剖分

这里三角剖分目的网格化图像脸部区域,方便寻找特征点,为后面使用仿射变换进行对齐操作:

delaunay.jpg

从三角剖分图上来看,人脸区域轮廓是非常相似的,人脸融合时需要把脸部每一个对应的小三角区域事先一一对齐,然后利用设置的透明度参数来做最终的效果融合。这样结果就显得不那么失真。

5,脸部融合

下面将脸部融合技术拆解为几部分:

1,脸部特长点提取、三角剖分(前面已经详细介绍了,这里就不再一一展开了);

2,对 1 中的三角剖分每个顶点做对应点衔接并记录下来,对应点记录的是三角形三顶点的索引数,如下图所示:

image

3,图片中对每一个三角剖分区域做放射变换,用到的函数:getAffineTransform() 得到仿射变换矩阵,warpAffine() 进行放射变换,最终得到两个变换图像,

4,对 3 中得到的两图像中像素值调整透明度参数,来进行图像融合

最终结果如下:

image
image
image

结果来看,脸部区域能够取得不错的结果,但整体来看仍然有很大的瑕疵,但是我们可以通过手动选择更多特征对应点来改善这种效果,最后附上完整代码

import cv2
import numpy as np
import sys


#Read points from  text file
def readPoints(path):
    # Create an array of points
    points = []
    # Read points
    with open(path) as file:
        for line in file:
            x,y = line.split()
            points.append((int(x),int(y)))

    return points


# Apply affine tranform calculated using srcTri and sdtTri to src and output an image of size
def applyAffineTransform(src,srcTri,dstTri,size):

    #Given a pair of triangles,find the affine transform.

    warpMat = cv2.getAffineTransform(np.float32(srcTri),np.float32(dstTri))

    #Apply the Affine Transform just foundto the src image
    dst = cv2.warpAffine(src,warpMat,(size[0],size[1]),None,flags=cv2.INTER_LINEAR,borderMode=cv2.BORDER_REFLECT_101)

    return dst


# Warps and alpha blends triangular regions from img1 and img2 to img
def morphTriangle(img1,img2,img,t1,t2,t,alpha):

    #Find bounding rectangle for each triangle
    r1 = cv2.boundingRect(np.float32([t1]))
    r2 = cv2.boundingRect(np.float32([t2]))
    r = cv2.boundingRect(np.float32([t]))

    # Offset points by left top corner of the respective rectangles
    t1Rect = []
    t2Rect = []
    tRect = []

    for i in range(0,3):
        tRect.append(((t[i][0] - r[0]),(t[i][1]-r[1])))
        t1Rect.append(((t1[i][0]-r1[0]),(t1[i][1]-r1[1])))
        t2Rect.append(((t2[i][0] -r2[0]),(t2[i][1]-r2[1])))

    # Get mask by filling triangles
    mask = np.zeros((r[3],r[2],3),dtype = np.float32)
    cv2.fillConvexPoly(mask,np.int32(tRect),(1.0,1.0,1.0),16,0)

    # Apply warpImage to small rectangular patched
    img1Rect = img1[r1[1]:r1[1]+r1[3],r1[0]:r1[0]+r1[2]]
    img2Rect = img2[r2[1]:r2[1]+r2[3],r2[0]:r2[0]+r2[2]]

    size = (r[2],r[3])
    warpImage1 = applyAffineTransform(img1Rect,t1Rect,tRect,size)
    warpImage2 = applyAffineTransform(img2Rect,t2Rect,tRect,size)

    # Alpha blend rectangular patches
    imgRect = (1.0-alpha) *warpImage1 +alpha*warpImage2

    # Copy triangular region of rectangular patch to tje output image
    print(r[1],r[3],r[0],r[2])
    print(imgRect.shape)
    img[r[1]:r[1]+r[3],r[0]:r[0]+r[2]] = img[r[1]:r[1]+r[3],r[0]:r[0]+r[2]]*(1-mask) +imgRect*mask



if __name__ =='__main__':
    filename1 = "E:/data_ceshi/2.jpg"
    filename2 = "E:/data_ceshi/3.jpg"

    points_txt1 = "E:/data_ceshi/2.txt"
    points_txt2  ="E:/data_ceshi/3.txt"

    alpha = 0.5

    # Read images
    img1 = cv2.imread(filename1)
    img2 = cv2.imread(filename2)

    # Convertat to float data type
    img1 = np.float32(img1)
    img2 = np.float32(img2)

    # Read array of corresponding points
    points1 = readPoints(points_txt1)
    points2 = readPoints(points_txt2)
    points = []


    # Compute weighted average point coordinate

    for i in range(0,len(points1)):
        x = (1-alpha) *points1[i][0] +alpha *points2[i][0]
        y = (1-alpha)*points1[i][1] + alpha*points2[i][1]
        points.append((x,y))


    imgMorph = np.zeros(img1.shape,dtype = img1.dtype)

    # Read triangles for tri.txt
    with open("E:/data_ceshi/tri.txt") as file:
        for line in file:
            x,y,z = line.split()

            x = int(x)
            y = int(y)
            z = int(z)

            t1 = [points1[x],points1[y],points1[z]]
            t2 = [points2[x],points2[y],points2[z]]
            t = [points[x],points[y],points[z]]
            # Morph one triangle at a time
            morphTriangle(img1,img2,imgMorph,t1,t2,t,alpha)



    # Display Results

    out_img = np.hstack((img1,imgMorph,img2))
    cv2.imwrite("E:/data_ceshi/out_img.jpg",out_img)

    cv2.imshow("Morphed Face",np.uint8(imgMorph))
    cv2.waitKey(0)

小总结

虽然本次面向对象是人脸,但相同技术原理也可以运用到其他物体上面,比如把苹果和橘子相融合、人脸区域更换等功能,如果有更好的 idea 的话,可能会得到意想不到的结果!

最后文章中完整源码和文件都已经打包到 Github 上去了,关注微信公号 : Z先生点记 ,后台回复关键词 FaceMorph 即可获取;OpenCV Python 部分暂时更新到这里(后续还会有的),接下来将更新 Numpy 程序包的相关使用教程!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,386评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,142评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,704评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,702评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,716评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,573评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,314评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,230评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,680评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,873评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,991评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,706评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,329评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,910评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,038评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,158评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,941评论 2 355