Two elements of a binary search tree (BST) are swapped by mistake.
Recover the tree without changing its structure.
Note:
A solution using O(n) space is pretty straight forward. Could you devise a constant space solution?
思想:此题一定是通过中序遍历得出结果。在该BST的中序遍历结果中,第一个出错的数一定比它后面的数大,第二个出错的数一定比它前面的小(关键:有可能两个数相邻,也有可能两个数不相邻,不相邻的时候second被更新两次)。
解法一(递归):
TreeNode* pre = NULL;
TreeNode* first = NULL;
TreeNode* second = NULL;
void recoverTree(TreeNode* root) {
dfs(root);
swap(first -> val, second -> val);
}
void dfs(TreeNode* root) {
if(!root) return ;
dfs(root -> left);
if(pre && pre -> val > root -> val){
if(!first)
first = pre;
second = root;
}
pre = root;
dfs(root -> right);
}
解法二(开辟栈空间辅助中序遍历):
void recoverTree(TreeNode* root) {
TreeNode* p = root;
TreeNode* pre = NULL;
TreeNode* first = NULL;
TreeNode* second = NULL;
stack<TreeNode*> st;
while(!st.empty() || p){
if(p){
st.push(p);
p = p -> left;
}
else{
p = st.top();
st.pop();
if(pre && pre -> val > p -> val){
if(first == NULL)
first = pre;
second = p;
}
pre = p;
p = p -> right;
}
}
swap(first -> val, second -> val);
}
解法三(Morris Traversal):
注:Morris Traversal会改变树的结构,要注意恢复原来的结构。
void recoverTree(TreeNode* root) {
TreeNode *cur = root, *tmp = NULL;
TreeNode *pre = NULL;
TreeNode *first = NULL, *second = NULL;
while(cur){
if(pre && pre -> val > cur -> val){
if(first == NULL)
first = pre;
second = cur;
}
if(cur -> left){
tmp = cur -> left;
while(tmp -> right && tmp -> right != cur)
tmp = tmp -> right;
if(tmp -> right == cur){
tmp -> right = NULL;
pre = cur;
cur = cur -> right;
}
else{
tmp -> right = cur;
cur = cur -> left;
}
}
else{
pre = cur;
cur = cur -> right;
}
}
swap(first -> val, second -> val);
}