决策树算法之分类回归树 CART(Classification and Regression Trees)【2】

上一篇文章主要介绍了分类树,下面我们再一起来看一下回归树,我们知道,分类决策树的叶子节点即为分类的结果;同理,回归树的叶子节点便是连续的预测值。那么,同样是回归算法,线性回归和决策树回归有什么区别呢?区别在于,前者拟合的是一条直线,而后者却可以拟合非线性的数据,如下图中的数据就是用线性回归来拟合的:

当数据呈现非线性分布时,例如下面的数据,假设它统计了流行歌手的喜好程度和年龄的关系,该系数值在 10 岁之前很低,接着在 10 到 20 岁时达到最高,但随着年龄的增加,该兴趣度会逐渐下降,如图所示:

上面的数据如果用线性回归来拟合,是这样的:

很明显,这样做会得到较大的 Bias,那么该数据就不应该使用线性回归这种简单的模型来表征,此时就需要用到非线性模型了,而回归树就是其中的一种。下边左图便是使用回归树对该数据进行拟合的结果,而右边是这棵树具体的样子:当 age 小于等于 13 时,结果为 1.228;age 大于 31 时,结果是 0.41;age 在 (13, 21] 的区域,结果为 100,剩下区域的结果为 54。

下面我们具体看一下这棵回归树是如何构建的

构建回归树

首先,我们在整个样本空间中选择一个阈值,该阈值可以将样本分为两部分,接下来分别对这两部分求出它们的均值,以均值作为预测值,计算所有数据的真实值到预测值之间的 SSR(Sum of Squared Residuals),SSR 本质上和 MSE(Mean Squared Error)的概念是一致的,都是衡量整体预测值和真实值之间的差异的,该差异越小越好。

以本数据为例,刚开始我们选择的阈值 threshold 为 1,则下图中的样本被阈值(虚线)分为两部分,然后分别对左右两边的数据求平均,结果如图中两条水平实线所示,以水平线作为每个区域的预测值,接着我们对每个点,求它们离均值之间的差的平方(误差的平方),并把它们加起来,得到的结果就是 SSR。

上图中的 SSR 为

SSR = (0-0)^2 + (0-35.8)^2 + ... + (0-35.8)^2 = 31358

每算完一个 SSR,都要改变阈值,用同样的方法在新的分类下算一个新的 SSR,如此循环下去,直到遍历完所有可能的域值,此时我们就可以作出一个「域值-SSR」的关系图,如下:

以上过程的目的是为了找一个阈值,可以使得 SSR 达到最小,而可以使 SSR 最小的域值就是我们的树根。反过来理解一下,即我们需要在特征空间(定义域)找到一个值,该值把样本分为两类,分别对应了 2 个不同的预测结果,此预测结果和样本真实值(值域)之间的差异要越小越好,在本例中,该值为 13,示意图如下:

和分类树一样,只要确定了树根的构建算法,后面构造其他节点实际上和构造树根是一模一样的,以上图为例,即分别以树的左右两边的子样本空间为整个样本空间,继续构造子样本空间的“树根”,实际上这就是递归,同时在递归的过程中,随着树的节点不断分裂,我们得到的残差(SSR)会越来越小。

需要注意的是,决策树如果不设限制,它的节点可以无限分裂下去,直到叶子节点中只包含 1 个元素为止,此时整棵树的残差达到最小值 0,这样做会让我们的模型在训练时得到很低的 Bias,但可想而知的是它的泛化能力很弱,即 Variance 很高,于是便过拟合了,这也是决策树容易过拟合的原因。

为了防止过拟合,通常有 2 个参数可以设置,一个是树的高度,另一个是叶子节点中最小样本的个数,本文中的模型对这两个参数的设置分别是 3 和 4;在真实环境中,叶子节点的样本数一般会设在 20 以上。

多维度特征的回归树

上面例子是使用单特征(年龄)来构建回归树,真实项目往往会有多个特征,此时我们该如何做呢?我们在原来的数据集中增加两个特征:性别和月支出,如下

年龄 性别 月支出 流行歌手喜好度
3 male 300 0
7 female 300 5
13 female 500 90
17 male 500 85
18 female 500 99
25 male 4000 75
30 female 5000 40
35 male 7000 0

现在我们知道了,构造决策树的要点在于树根的构造,多个特征的话,我们需要分别对每个特征,找出可以使 SSR 最低的阈值,根据前面学到的知识,对年龄来说,可使 SSR 最低的域值是 「age<=7」,此时 SSR_{age}=7137

同理,对月支出来说,可使 SSR 最低的域值是 「expense<=300」,此时 SSR_{expense}=7143

而性别这个特征比较特别,它只有一个阈值,其 SSR_{gender}=12287

以上三个数字,有兴趣的同学可以根据上面的表格自己算一下,最终我们选择 SSR 最低的特征及其阈值作为根节点,即「age<=7」。

知道根节点如何产生后,后面节点的生成就好办了,于是多维特征的回归树我们也构建出来了。

总结

本文主要介绍回归决策树的生成算法,及回归树中比较重要的参数为:树的深度和叶子节点中最小的样本数,这两个参数可以防止过拟合问题。

最后我们一起学习了从多个特征维度来产生回归树,它和单维度特征的区别在于,每产生一个节点前,都需要计算每个特征的 SSR_{min} 及其对应的阈值,最后取其中最小的 SSR_{min} 对应的特征和阈值作为该节点。

参考资料:Regression Trees, Clearly Explained

相关文章:

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,546评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,224评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,911评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,737评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,753评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,598评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,338评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,249评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,696评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,888评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,013评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,731评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,348评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,929评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,048评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,203评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,960评论 2 355

推荐阅读更多精彩内容