20170923_Handbook

1 Introduction to evolutionary computation

1.1 Introductory remarks

As a recognized field, evolutionary computation is quite young. The term itself was invented as recently as 1991, and it represents an effort to bring together researchers who have been following different approaches to simulating various aspects of evolution. These techniques of genetic algorithms (Chapter 7), evolution strategies (Chapter 8), and evolutionary programming (Chapter 9) have one fundamental commonality: they each involve the reproduction, random variation, competition, and selection of contending individuals in a population. These form the essential essence of evolution, and once these four processes are in place, whether in nature or in a computer, evolution is the inevitable outcome (Atmar 1994). The impetus to simulate evolution on a computer comes from at least four directions.

繁殖、变异、竞争、选择是四大共通点。

1.2 Optimization

Evolution is an optimization process (Mayr 1988, p 104). Darwin (1859, ch 6) was struck with the ‘organs of extreme perfection’ that have been evolved, one such example being the image-forming eye (Atmar 1976). Optimization does not imply perfection, yet evolution can discover highly precise functional solutions to particular problems posed by an organism’s environment, and even though the mechanisms that are evolved are often overly elaborate from an engineering perspective, function is the sole quality that is exposed to natural selection, and functionality is what is optimized by iterative selection and mutation.

?????

It is quite natural, therefore, to seek to describe evolution in terms of an algorithm that can be used to solve difficult engineering optimization problems. The classic techniques of gradient descent, deterministic hill climbing, and purely random search (with no heredity) have been generally unsatisfactory when applied to nonlinear optimization problems, especially those with stochastic, temporal, or chaotic components. But these are the problems that nature has seemingly solved so very well. Evolution provides inspiration for computing the solutions to problems that have previously appeared intractable. This was a key foundation for the efforts in evolution strategies (Rechenberg 1965, 1994, Schwefel 1965, 1995).

随机和梯度下降在求解非线性问题中都不好,自然看起来解决的好。

1.3 Robust adaptation

The real world is never static, and the problems of temporal optimization are some of the most challenging. They require changing behavioral strategies in light of the most recent feedback concerning the success or failure of the current strategy. Holland (1975), under the framework of genetic algorithms (formerly called reproductive plans), described a procedure that can evolve strategies, either in the form of coded strings or as explicit behavioral rule bases called classifier systems (Chapter 12), by exploiting the potential to recombine successful pieces of competing strategies, bootstrapping the knowledge gained by independent individuals. The result is a robust procedure that has the potential to adjust performance based on feedback from the environment.

robust是能根据反馈调节策略的能力。?????

1.4 Machine intelligence

Intelligence may be defined as the capability of a system to adapt its behavior to meet desired goals in a range of environments (Fogel 1995, p xiii). Intelligent behavior then requires prediction, for adaptation to future circumstances requires predicting those circumstances and taking appropriate action. Evolution has created creatures of increasing intelligence over time. Rather than seek to generate machine intelligence by replicating humans, either in the rules they may follow or in their neural connections, an alternative approach to generating machine intelligence is to simulate evolution on a class of predictive algorithms. This was the foundation for the evolutionary programming research of Fogel (1962, Fogel et al 1966).

智力是是一个系统为适应环境变化做出的适应性行为,需要预测采取合适举措。进化创造的个体智力越来越高。????

1.5 Biology

Rather than attempt to use evolution as a tool to solve a particular engineering problem, there is a desire to capture the essence of evolution in a computer simulation and use the simulation to gain new insight into the physics of natural evolutionary processes (Ray 1991) (see also Chapter 4). Success raises the possibility of studying alternative biological systems that are merely plausible images of what life might be like in some way. It also raises the question of what properties such imagined systems might have in common with life as evolved on Earth (Langton 1987). Although every model is incomplete, and assessing what life might be like in other instantiations lies in the realm of pure speculation, computer simulations under the rubric of artificial life have generated some patterns that appear to correspond with naturally occurring phenomena.

通过计算机模拟返回去对自然进化加深理解。

1.6 Discussion

The ultimate answer to the question ‘why simulate evolution?’ lies in the lack of good alternatives. We cannot easily germinate another planet, wait several millions of years, and assess how life might develop elsewhere. We cannot easily use classic optimization methods to find global minima in functions when they are surrounded by local minima. We find that expert systems and other attempts to mimic human intelligence are often brittle: they are not robust to changes in the domain of application and are incapable of correctly predicting future circumstances so as to take appropriate action. In contrast, by successfully exploiting the use of randomness, or in other words the useful use of uncertainty, ‘all possible pathways are open’ for evolutionary computation (Hofstadter 1995, p 115). Our challenge is, at least in some important respects, to not allow our own biases to constrain the potential for evolutionary computation to discover new solutions to new problems in fascinating and unpredictable ways. However, as always, the ultimate advancement of the field will come from the careful abstraction and interpretation of the natural processes that inspire it.

为什么要演化计算,因为没有更好的替代品。专家系统???和其他对人类智力的模拟,不能准确预测以采取措施,不robust。挑战是不能因为我们选择的倾向限制了演化计算解决问题的潜力。

2 Possible applications of evolutionary computation

2.1 Introduction

Applications of evolutionary computation (EC) fall into a wide continuum of areas. For convenience, in this chapter they have been split into five broad categories:
• planning
• design
• simulation and identification
• control
• classification.
These categories are by no means meant to be absolute or definitive. They all overlap to some extent, and many applications could rightly appear in more than one of the categories.
A number of bibliographies where more extensive information on EC applications can be found are listed after the references at the end of this chapter.

2.2 Applications in planning

2.2.1 Routing

Perhaps one of the best known combinatorial optimization problems is the traveling salesman problem or TSP (Goldberg and Lingle 1985, Grefenstette 1987, Fogel 1988, Oliver et al 1987, Mu ̈hlenbein 1989, Whitley et al 1989, Fogel 1993a, Homaifar et al 1993). A salesman must visit a number of cities, and then return home. In which order should the cities be visited to minimize the distance traveled? Optimizing the tradeoff between speed and accuracy of solution has been one aim (Verhoeven et al 1992).

最知名的问题是旅行商问题,旅行商必须访问所有城市然后回家,求最小化总距离的访问顺序。在速度和访问路径不重复中权衡。

A generalization of the TSP occurs when there is more than one salesman (Fogel 1990). The vehicle routing problem is similar. There is a fleet of vehicles, all based at the same depot. A set of customers must each receive one delivery. Which route should each vehicle take for minimum cost? There are constraints, for example, on vehicle capacity and delivery times (Blanton and Wainwright 1993, Thangia et al 1993).

一个旅行商问题的扩展是多个商人,在一个车队中。一组顾客每个人收到一个货物,每个车(商人)应该怎么走花费最少。

Closely related to this is the transportation problem, in which a single commodity must be distributed to a number of customers from a number of depots. Each customer may receive deliveries from one or more depots. What is the minimum-cost solution? (Michalewicz 1992, 1993).

和这个问题相似的是交通运输问题,一种货物必须从很多个仓库送到很多顾客手上。每个顾客可能从一个或多个仓库收到货,求最小花费的解。

Planning the path which a robot should take is another route planning problem. The path must be feasible and safe (i.e. it must be achievable within the operational constraints of the robot) and there must be no collisions. Examples include determining the joint motions required to move the gripper of a robot arm between locations (Parker et al 1989, Davidor 1991, McDonnell et al 1992), and autonomous vehicle routing (Jakob et al 1992, Page et al 1992). In unknown areas or nonstatic environments, on-line planning/navigating is required, in which the robot revises its plans as it travels.

测试机器人路线是另一个路线规划问题。路径必须可行和安全并且没有碰撞。例如决定机器人到达目的地关节的活动,在未知或者变化的环境中,需要实时规划。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容

  • 作者/大树 把凡尘看了 沾惹世俗的酒香 清晨的老牛笃行在田埂 你已是吹笛高歌的仙人 在盛草繁花中卧倒 欲望蒸发在田...
    王里昂阅读 203评论 0 0
  • 脑补了一场考研那一天,正在专注地答题之时,周围炸来一颗炮弹。然后什么都看不见,弥漫着烟雾。
    一块瘦司阅读 141评论 0 0
  • 很快一个月了,我这个月感觉能量满满,工作很忙,生活很充实。孩子重新开学去上学,改变很大,他一直在努力,我看...
    宁静致远_a157阅读 267评论 2 6