TCGA数据挖掘(4):生存分析

image.png

生存分析

image.png
event:0代表或者,1:代表阳性结局;time:活着的时间;年龄是不符合生存曲线的

COX回归

HR>1,表示与病人的危险正相关

生存分析画图代码

生存分析前要进行数据的整理

knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)
knitr::opts_chunk$set(fig.width = 6,fig.height = 6,collapse = TRUE)
knitr::opts_chunk$set(message = FALSE)

生存分析只需要tumor数据,不要normal,将其去掉,新表达矩阵数据命名为exprSet;

clinical信息需要进一步整理,成为生存分析需要的格式,新临床信息数据命名为meta。

由于不同癌症的临床信息表格组织形式不同,这里的代码需要根据实际情况修改。

rm(list=ls())
options(stringsAsFactors = F)
load("TCGA-CHOL_gdc.Rdata")
library(stringr)

#clinical通常有几十列,选出其中有用的几列。
tmp = data.frame(colnames(clinical))
clinical = clinical[,c(
  'bcr_patient_barcode',
  'vital_status',
  'days_to_death',
  'days_to_last_followup',
  'race_list',
  'days_to_birth',
  'gender' ,
  'stage_event'
)]
#其实days_to_last_followup应该是找age_at_initial_pathologic_diagnosis,这表格里没有,用days_to_birth计算一下年龄,暂且替代。
dim(clinical)
#rownames(clinical) <- NULL
rownames(clinical) <- clinical$bcr_patient_barcode
clinical[1:4,1:4]

meta = clinical
exprSet=exp[,Group=='tumor']

#简化meta的列名
colnames(meta)=c('ID','event','death','last_followup','race','age','gender','stage')
#调整meta的ID顺序与exprSet列名一致
meta=meta[match(str_sub(colnames(exprSet),1,12),meta$ID),]
all(meta$ID==str_sub(colnames(exprSet),1,12))

#整理生存分析的输入数据----

#1.1由随访时间和死亡时间计算生存时间(月)

meta[,3][meta[,3]==""]=0
meta[,4][meta[,4]==""]=0
meta$time=(as.numeric(meta[,3])+as.numeric(meta[,4]))/30

#1.2 根据生死定义event,活着是0,死的是1
meta$event=ifelse(meta$event=='Alive',0,1)

#1.3 年龄和年龄分组
meta$age=ceiling(abs(as.numeric(meta$age))/365)
meta$age_group=ifelse(meta$age>median(meta$age),'older','younger')

#1.4 stage 
library(stringr) 
meta$stage
tmp = str_split(meta$stage,' ',simplify = T)[,2]
str_count(tmp,"T")
str_locate(tmp,"T")[,1]
tmp = str_sub(tmp,1,str_locate(tmp,"T")[,1]-1)
table(tmp)
meta$stage = tmp

#1.5 race
table(meta$race)
save(meta,exprSet,cancer_type,file = paste0(cancer_type,"_sur_model.Rdata"))

生存模型

生存模型的目标:进一步缩小基因的范围
训练集构建模型,测试集评估模型
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容