并发编程记录(一)--单线程、多线程、多进程对比

Python实现并发编程

  • 多线程
  • 多进程
  • 协程(生成器)
并发编程的基本概念
  • 串行:一个人在一段时间段内只能干一件事情(吃完饭后才能看电视)
  • 并行:一个人在一段时间内同时干多件事情(边吃饭边看电视)

在Python中,多线程 和 协程 虽然是严格上来说是串行,但却比一般的串行程序执行效率高得很。
一般的串行程序,在程序阻塞的时候,只能干等着,不能去做其他事。就好像,电视上播完正剧,进入广告时间,我们却不能去趁广告时间是吃个饭。对于程序来说,这样做显然是效率极低的,是不合理的。

当然,利用广告时间去做其他事,灵活安排时间。这也是我们多线程和协程 要帮我们要完成的事情,内部合理调度任务,使得程序效率最大化。

虽然 多线程 和 协程 已经相当智能了。但还是不够高效,最高效的应该是一心多用,边看电视边吃饭边聊天。这就是我们的 多进程 才能做的事了。

多线程
多进程
单线程、多线程、多进程对比

实验配置

操作系统 cpu核数 内存 硬盘
ubuntu 18.04 4 8G SSD

开始对比之前定义四种类型的场景

  • CPU计算密集型
    • 一些进程绝大多数时间在计算上,称为计算密集型(CPU密集型)computer-bound。一些大量循环的代码(例如:图片处理、视频编码、人工智能等)就是CPU密集型
  • 磁盘IO密集
    • 磁盘io,顾名思义就是磁盘的输入输出。即向磁盘写入数据和从磁盘读取数据
  • 网络IO密集
    • 有一些进程则在input 和output上花费了大多时间,称为I/O密集型,I/O-bound。比如搜索 引擎大多时间是在等待相应
  • 【模拟】IO密集
import time
import requests

# CPU计算密集型
def cpu_count(a=1,b=1):
    # 使程序完成150万次计算
    c = 0
    while c < 500000:
        c += 1
        a += a
        b += b

# 磁盘读写IO密集
def io_disk():
    with open('./IOtest.txt','w') as f:
        for i in range(5000000):
            f.write('磁盘-io-测试')
            
# 网络IO密集型
headers = {
        "User-Agent": "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; 360SE)"
    }
url = 'https://www.baidu.com/'
def io_request():
    try:
        response = requests.get(url,headers=headers)
        return
    except Except as e:
        return e

# 模拟IO密集
def io_simulation():
    time.sleep(2)

比拼的指标,用时间来衡量。时间消耗得越少,说明效率越高

import functools import wraps
# 定义一个时间装饰器,来计算消耗的时间
def record(output):
    def use_time(func):
        @wraps(func)
        def wrapper(*args,**kwargs):
            type = kwargs.setdefault('type',None)
            st_time = time.time()
            result = func(*args,**kwargs)
            end_time = time.time()
            print(f'{output}-{type}耗时:{end_time-st_time}s')
        return wrapper
    return use_time

1.先来看看单线程

# 定义单线程
@record('【单线程】')
def single_thread(func,type=''):
    for i in range(10):
        func()
        
# 开始测试【单线程】
single_thread(cpu_count,type='CPU计算密集型')
single_thread(io_disk,type='磁盘IO密集型')
single_thread(io_request,type='网络IO密集型')
single_thread(io_simulation,type='模拟IO密集型')

# 结果
【单线程】-CPU计算密集型耗时:80.91554880142212s
【单线程】-磁盘IO密集型耗时:15.750258445739746s
【单线程】-网络IO密集型耗时:2.640401840209961s
【单线程】-模拟IO密集型耗时:20.018026113510132s

2.再来看看多线程

from threading import Thread

# 写法一
@record('【多线程】')
def multi_thread(func,type=''):
    threads = [Thread(target=func) for _ in range(10)]
    for thread in threads:
        thread.start()
    for thread in threads:
        thread.join()

# 多线程测试1
multi_thread(cpu_count,type='CPU计算密集型')
multi_thread(io_disk,type='磁盘IO密集型')
multi_thread(io_request,type='网络IO密集型')
multi_thread(io_simulation,type='模拟IO密集型')

# 结果
【多线程】-CPU计算密集型耗时:121.99781441688538s
【多线程】-磁盘IO密集型耗时:21.91859245300293s
【多线程】-网络IO密集型耗时:0.4386627674102783s
【多线程】-模拟IO密集型耗时:2.0033113956451416s

# 写法二(要慢一点)
@record('【多线程】')
def mul_thread(func,type=''):
    thread_list = []
    for i in range(10):
        t = Thread(target=func,args=())
        thread_list.append(t)
        t.start()
    e = len(thread_list)
    while True:
        for th in thread_list:
            if not th.is_alive():
                e -= 1
        if e <= 0:
            break

# 多线程测试2
mul_thread(cpu_count,type='CPU计算密集型')
mul_thread(io_disk,type='磁盘IO密集型')
mul_thread(io_request,type='网络IO密集型')
mul_thread(io_simulation,type='模拟IO密集型')

# 结果
【多线程】-CPU计算密集型耗时:126.94713139533997s
【多线程】-磁盘IO密集型耗时:37.09427046775818s
【多线程】-网络IO密集型耗时:0.6191723346710205s
【多线程】-模拟IO密集型耗时:2.0074384212493896s

3.最后来看看多进程吧

from multiprocessing import Process

# 写法一
@record('【多进程】')
def multi_process(func,type=''):
    processes = [Process(target=func) for _ in range(10)]
    for process in processes:
        process.start()
    for process in processes:
        process.join()

# 多进程测试1
multi_process(cpu_count,type='CPU计算密集型')
multi_process(io_disk,type='磁盘IO密集型')
multi_process(io_request,type='网络IO密集型')
multi_process(io_simulation,type='模拟IO密集型')

# 结果
【多进程】-CPU计算密集型耗时:44.23211455345154s
【多进程】-磁盘IO密集型耗时:7.884604215621948s
【多进程】-网络IO密集型耗时:0.40494322776794434s
【多进程】-模拟IO密集型耗时:2.064232349395752s

# 写法二(还是要慢一点)
@record('【多线程】')
def mul_process(func,type=''):
    process_list = []
    for i in range(10):
        p = Process(target=func,args=())
        process_list.append(p)
        p.start()
    e = len(process_list)
    while True:
        for p in process_list:
            if not p.is_alive():
                e -= 1
        if e <= 0:
            break

# 多进程测试2
mul_process(cpu_count,type='CPU计算密集型')
mul_process(io_disk,type='磁盘IO密集型')
mul_process(io_request,type='网络IO密集型')
mul_process(io_simulation,type='模拟IO密集型')

# 结果
【多进程】-CPU计算密集型耗时:47.9653902053833s
【多进程】-磁盘IO密集型耗时:9.239834308624268s
【多进程】-网络IO密集型耗时:0.31076598167419434s
【多进程】-模拟IO密集型耗时:2.0489490032196045s
性能对比汇总
类型 cpu计算密集型 磁盘IO密集型 网络IO密集型 模拟IO密集型
单线程 89.91 15.75 2.64 20.01
多线程测试一 121.99 21.91 0.43 2.00
多线程测试二 126.94 37.09 0.61 2.00
多进程测试一 44.23 7.88 0.40 2.06
多线程测试二 47.96 9.23 0.31 2.04

分析下这个表格

首先是CPU密集型,多线程以对比单线程,不仅没有优势,显然还由于要不断的加锁释放GIL全局锁,切换线程而耗费大量时间,效率低下,而多进程,由于是多个CPU同时进行计算工作,相当于十个人做一个人的作业,显然效率是成倍增长的。

然后是IO密集型,IO密集型可以是磁盘IO,网络IO,数据库IO等,都属于同一类,计算量很小,主要是IO等待时间的浪费。通过观察,可以发现,我们磁盘IO,网络IO的数据,多线程对比单线程也没体现出很大的优势来。这是由于我们程序的的IO任务不够繁重,所以优势不够明显。

所以我还加了一个「模拟IO密集型」,用sleep来模拟IO等待时间,就是为了体现出多线程的优势,也能让大家更加直观的理解多线程的工作过程。单线程需要每个线程都要sleep(2),10个线程就是20s,而多线程,在sleep(2)的时候,会切换到其他线程,使得10个线程同时sleep(2),最终10个线程也就只有2s.

可以得出以下几点结论

单线程总是最慢的,多进程总是最快的。
多线程适合在IO密集场景下使用,譬如爬虫,网站开发等
多进程适合在对CPU计算运算要求较高的场景下使用,譬如大数据分析,机器学习等
多进程虽然总是最快的,但是不一定是最优的选择,因为它需要CPU资源支持下才能体现优势

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,826评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,968评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,234评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,562评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,611评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,482评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,271评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,166评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,608评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,814评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,926评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,644评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,249评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,866评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,991评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,063评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,871评论 2 354

推荐阅读更多精彩内容

  • 必备的理论基础 1.操作系统作用: 隐藏丑陋复杂的硬件接口,提供良好的抽象接口。 管理调度进程,并将多个进程对硬件...
    drfung阅读 3,541评论 0 5
  • 一. 操作系统概念 操作系统位于底层硬件与应用软件之间的一层.工作方式: 向下管理硬件,向上提供接口.操作系统进行...
    月亮是我踢弯得阅读 5,967评论 3 28
  • 又来到了一个老生常谈的问题,应用层软件开发的程序员要不要了解和深入学习操作系统呢? 今天就这个问题开始,来谈谈操...
    tangsl阅读 4,125评论 0 23
  • PHP是单线程,还是多线程的呢?PHP是多进程,还是多线程的呢?...解决这些问题,首先必须先了解线程和进程。 备...
    JunChow520阅读 2,004评论 1 3
  • 1. 简介 用户打开浏览器,其实就是打开了浏览器应用程序。那么什么是程序呢?我们常说浏览器是多线程的,JS 是单线...
    love丁酥酥阅读 3,519评论 0 6