Python中`yield`关键字有什么用?

以下文章摘自代码领悟

提问

Python中yield关键字有什么用? 它能做什么?

例如,我试图理解这段代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

回答

要了解yield的作用,您必须了解生成器是什么。 在了解生成器之前,您必须了解iterables。

迭代器
创建列表时,您可以逐个读取其项目。 逐个读取其项称为迭代:

mylist = [1, 2, 3]
for i in mylist:
... print(i)
1
2
3
mylist是一个可迭代的。 当您使用列表理解时,您创建了一个列表,因此一个可迭代的:

mylist = [x*x for x in range(3)]
for i in mylist:
... print(i)
0
1
4
您可以使用"for... in..."的所有内容都是可迭代的;lists,strings,文件。..

这些iterables很方便,因为您可以随心所欲地读取它们,但是您将所有值存储在内存中,当您有很多值时,这并不总是您想要的。

发电机
生成器是迭代器,一种可迭代的你只能迭代一次。 生成器不会将所有值存储在内存中,它们会动态生成值:

mygenerator = (x*x for x in range(3))
for i in mygenerator:
... print(i)
0
1
4
除了你使用()而不是[]之外,它是一样的。 但是,您不能第二次执行for i in mygenerator,因为生成器只能使用一次:它们计算0,然后忘记它并计算1,并结束计算4,一个接一个。

产量
yield是一个像return一样使用的关键字,除了函数将返回一个生成器。

def create_generator():
... mylist = range(3)
... for i in mylist:
... yield i*i
...
mygenerator = create_generator() # create a generator
print(mygenerator) # mygenerator is an object!
<generator object create_generator at 0xb7555c34>
for i in mygenerator:
... print(i)
0
1
4
这里是一个无用的例子,但是当你知道你的函数将返回一组巨大的值时,它很方便,你只需要读取一次。

要掌握yield,您必须了解当您调用函数时,您在函数体中编写的代码不会运行。函数只返回生成器对象,这有点棘手。

然后,您的代码将从每次for使用生成器时停止的位置继续。

现在最难的部分:

当for第一次调用从你的函数创建的生成器对象时,它将从一开始就在你的函数中运行代码,直到它点击yield,然后它将返回循环的第一个值。 然后,每个后续调用都将运行您在函数中编写的循环的另一个迭代,并返回下一个值。 这将继续下去,直到生成器被认为是空的,这发生在函数运行而没有击中yield时。 这可能是因为循环已经结束,或者因为你不再满足an"if/else"。

你的代码解释
发生器:

Here you create the method of the node object that will return the generator

def _get_child_candidates(self, distance, min_dist, max_dist):

# Here is the code that will be called each time you use the generator object:

# If there is still a child of the node object on its left
# AND if the distance is ok, return the next child
if self._leftchild and distance - max_dist < self._median:
    yield self._leftchild

# If there is still a child of the node object on its right
# AND if the distance is ok, return the next child
if self._rightchild and distance + max_dist >= self._median:
    yield self._rightchild

# If the function arrives here, the generator will be considered empty
# there is no more than two values: the left and the right children

调用者:

Create an empty list and a list with the current object reference

result, candidates = list(), [self]

Loop on candidates (they contain only one element at the beginning)

while candidates:

# Get the last candidate and remove it from the list
node = candidates.pop()

# Get the distance between obj and the candidate
distance = node._get_dist(obj)

# If distance is ok, then you can fill the result
if distance <= max_dist and distance >= min_dist:
    result.extend(node._values)

# Add the children of the candidate in the candidate's list
# so the loop will keep running until it will have looked
# at all the children of the children of the children, etc. of the candidate
candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))

return result
此代码包含几个智能部分:

循环在列表上迭代,但在循环迭代时列表会扩展。 这是一种简洁的方式来遍历所有这些嵌套数据,即使它有点危险,因为你最终可能会有一个无限循环。 在这种情况下,candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))耗尽了生成器的所有值,但是while不断创建新的生成器对象,这些对象将产生与以前的值不同的值,因为它不在同一个节点上应用。

extend()方法是一个列表对象方法,它期望一个可迭代的,并将其值添加到列表中。

通常我们会传递一个列表给它:

a = [1, 2]
b = [3, 4]
a.extend(b)
print(a)
[1, 2, 3, 4]
但是在你的代码中,它得到了一个生成器,这很好,因为:

您不需要读取两次值。
你可能有很多孩子,你不希望他们都存储在内存中。
它的工作原理是因为Python不关心方法的参数是否是列表。 Python需要迭代器,因此它将与字符串、列表、元组和生成器一起工作! 这被称为duck typing,也是Python如此酷的原因之一。 但这是另一个故事,另一个问题。..

你可以在这里停下来,或者读一点,看看生成器的高级使用:

控制发电机耗尽

class Bank(): # Let's create a bank, building ATMs
... crisis = False
... def create_atm(self):
... while not self.crisis:
... yield "100" hsbc = Bank() # When everything's ok the ATM gives you as much as you want corner_street_atm = hsbc.create_atm() print(corner_street_atm.next())100
print(corner_street_atm.next())
100 print([corner_street_atm.next() for cash in range(5)]) ['100', '100', '100', '100', '100']
hsbc.crisis = True # Crisis is coming, no more money!
print(corner_street_atm.next())
<type 'exceptions.StopIteration'>
wall_street_atm = hsbc.create_atm() # It's even true for new ATMs
print(wall_street_atm.next())
<type 'exceptions.StopIteration'>
hsbc.crisis = False # The trouble is, even post-crisis the ATM remains empty
print(corner_street_atm.next())
<type 'exceptions.StopIteration'>
brand_new_atm = hsbc.create_atm() # Build a new one to get back in business
for cash in brand_new_atm:
... print cash
100100
100100
100100
a = [1, 2]
>>> b = [3, 4]
>>> a.extend(b)
>>> print(a)
[1, 2, 3, 4]
但是在你的代码中,它得到了一个生成器,这很好,因为:

您不需要读取两次值。
你可能有很多孩子,你不希望他们都存储在内存中。
它的工作原理是因为Python不关心方法的参数是否是列表。 Python需要迭代器,因此它将与字符串、列表、元组和生成器一起工作! 这被称为duck typing,也是Python如此酷的原因之一。 但这是另一个故事,另一个问题。..

你可以在这里停下来,或者读一点,看看生成器的高级使用:

控制发电机耗尽
>>> class Bank(): # Let's create a bank, building ATMs
... crisis = False
... def create_atm(self):
... while not self.crisis:
... yield "100" >>> hsbc = Bank() # When everything's ok the ATM gives you as much as you want >>> corner_street_atm = hsbc.create_atm() >>> print(corner_street_atm.next())100
>>> print(corner_street_atm.next())
100 >>> print([corner_street_atm.next() for cash in range(5)]) ['100', '100', '100', '100', '100']
>>> hsbc.crisis = True # Crisis is coming, no more money!
>>> print(corner_street_atm.next())
<type 'exceptions.StopIteration'>
>>> wall_street_atm = hsbc.create_atm() # It's even true for new ATMs
>>> print(wall_street_atm.next())
<type 'exceptions.StopIteration'>
>>> hsbc.crisis = False # The trouble is, even post-crisis the ATM remains empty
>>> print(corner_street_atm.next())
<type 'exceptions.StopIteration'>
>>> brand_new_atm = hsbc.create_atm() # Build a new one to get back in business
>>> for cash in brand_new_atm:
... print cash
100100
100100
100100
100100
100 b = [3, 4] >>> a.extend(b) >>> print(a) [1, 2, 3, 4] 但是在你的代码中,它得到了一个生成器,这很好,因为: 您不需要读取两次值。 你可能有很多孩子,你不希望他们都存储在内存中。 它的工作原理是因为Python不关心方法的参数是否是列表。 Python需要迭代器,因此它将与字符串、列表、元组和生成器一起工作! 这被称为duck typing,也是Python如此酷的原因之一。 但这是另一个故事,另一个问题。.. 你可以在这里停下来,或者读一点,看看生成器的高级使用: 控制发电机耗尽 >>> class Bank(): # Let's create a bank, building ATMs ... crisis = False ... def create_atm(self): ... while not self.crisis: ... yield "100"
>>> hsbc = Bank() # When everything's ok the ATM gives you as much as you want
>>> corner_street_atm = hsbc.create_atm()
>>> print(corner_street_atm.next())
100 >>> print(corner_street_atm.next())100
>>> print([corner_street_atm.next() for cash in range(5)])
['100', '100', '100', '100', '100'] >>> hsbc.crisis = True # Crisis is coming, no more money! >>> print(corner_street_atm.next()) <type 'exceptions.StopIteration'> >>> wall_street_atm = hsbc.create_atm() # It's even true for new ATMs >>> print(wall_street_atm.next()) <type 'exceptions.StopIteration'> >>> hsbc.crisis = False # The trouble is, even post-crisis the ATM remains empty >>> print(corner_street_atm.next()) <type 'exceptions.StopIteration'> >>> brand_new_atm = hsbc.create_atm() # Build a new one to get back in business >>> for cash in brand_new_atm: ... print cash100
100100
100100
100100
100100
...
注意:对于Python3,使用print(corner_street_atm.next())或print(next(corner_street_atm))

它对于控制对资源的访问等各种事情都很有用。

Itertools,你最好的朋友
itertools模块包含用于操作iterables的特殊函数。 曾经想复制一个发电机吗? 链两个发电机? 在一个单行嵌套列表中分组值? Map / Zip不创建另一个列表?

那么就import itertools。

一个例子? 让我们来看看四匹马比赛的可能到达顺序:

horses = [1, 2, 3, 4]
races = itertools.permutations(horses)
print(races)
<itertools.permutations object at 0xb754f1dc>
print(list(itertools.permutations(horses)))
hsbc = Bank() # When everything's ok the ATM gives you as much as you want
>>> corner_street_atm = hsbc.create_atm()
>>> print(corner_street_atm.next())
100 >>> print(corner_street_atm.next())100
>>> print([corner_street_atm.next() for cash in range(5)])
['100', '100', '100', '100', '100'] >>> hsbc.crisis = True # Crisis is coming, no more money! >>> print(corner_street_atm.next()) <type 'exceptions.StopIteration'> >>> wall_street_atm = hsbc.create_atm() # It's even true for new ATMs >>> print(wall_street_atm.next()) <type 'exceptions.StopIteration'> >>> hsbc.crisis = False # The trouble is, even post-crisis the ATM remains empty >>> print(corner_street_atm.next()) <type 'exceptions.StopIteration'> >>> brand_new_atm = hsbc.create_atm() # Build a new one to get back in business >>> for cash in brand_new_atm: ... print cash100
100100
100100
100100
100100
...
注意:对于Python3,使用print(corner_street_atm.next())或print(next(corner_street_atm))

它对于控制对资源的访问等各种事情都很有用。

Itertools,你最好的朋友
itertools模块包含用于操作iterables的特殊函数。 曾经想复制一个发电机吗? 链两个发电机? 在一个单行嵌套列表中分组值? Map / Zip不创建另一个列表?

那么就import itertools。

一个例子? 让我们来看看四匹马比赛的可能到达顺序:

>>> horses = [1, 2, 3, 4]
>>> races = itertools.permutations(horses)
>>> print(races)
<itertools.permutations object at 0xb754f1dc>
>>> print(list(itertools.permutations(horses)))
[(1, 2, 3, 4),
(1, 2, 4, 3),
(1, 3, 2, 4),
(1, 3, 4, 2),
(1, 4, 2, 3),
(1, 4, 3, 2),
(2, 1, 3, 4),
(2, 1, 4, 3),
print(corner_street_atm.next())
100 >>> print(corner_street_atm.next())100
>>> print([corner_street_atm.next() for cash in range(5)])
['100', '100', '100', '100', '100'] >>> hsbc.crisis = True # Crisis is coming, no more money! >>> print(corner_street_atm.next()) <type 'exceptions.StopIteration'> >>> wall_street_atm = hsbc.create_atm() # It's even true for new ATMs >>> print(wall_street_atm.next()) <type 'exceptions.StopIteration'> >>> hsbc.crisis = False # The trouble is, even post-crisis the ATM remains empty >>> print(corner_street_atm.next()) <type 'exceptions.StopIteration'> >>> brand_new_atm = hsbc.create_atm() # Build a new one to get back in business >>> for cash in brand_new_atm: ... print cash100
100100
100100
100100
100100
...
注意:对于Python3,使用print(corner_street_atm.next())或print(next(corner_street_atm))

它对于控制对资源的访问等各种事情都很有用。

Itertools,你最好的朋友
itertools模块包含用于操作iterables的特殊函数。 曾经想复制一个发电机吗? 链两个发电机? 在一个单行嵌套列表中分组值? Map / Zip不创建另一个列表?

那么就import itertools。

一个例子? 让我们来看看四匹马比赛的可能到达顺序:

>>> horses = [1, 2, 3, 4]
>>> races = itertools.permutations(horses)
>>> print(races)
<itertools.permutations object at 0xb754f1dc>
>>> print(list(itertools.permutations(horses)))
[(1, 2, 3, 4),
(1, 2, 4, 3),
(1, 3, 2, 4),
(1, 3, 4, 2),
(1, 4, 2, 3),
(1, 4, 3, 2),
(2, 1, 3, 4),
(2, 1, 4, 3),
(2, 3, 1, 4),
(2, 3, 4, 1),
(2, 4, 1, 3),
(2, 4, 3, 1),
(3, 1, 2, 4),
(3, 1, 4, 2),
(3, 2, 1, 4),
(3, 2, 4, 1),
(3, 4, 1, 2),
(3, 4, 2, 1),
(4, 1, 2, 3),
(4, 1, 3, 2),
(4, 2, 1, 3),
(4, 2, 3, 1),
(4, 3, 1, 2),
(4, 3, 2, 1)]
print(corner_street_atm.next())
<type 'exceptions.StopIteration'>
>>> wall_street_atm = hsbc.create_atm() # It's even true for new ATMs
>>> print(wall_street_atm.next())
<type 'exceptions.StopIteration'>
>>> hsbc.crisis = False # The trouble is, even post-crisis the ATM remains empty
>>> print(corner_street_atm.next())
<type 'exceptions.StopIteration'>
>>> brand_new_atm = hsbc.create_atm() # Build a new one to get back in business
>>> for cash in brand_new_atm:
... print cash
100100
100100
100100
100100
$100
...
注意:对于Python3,使用print(corner_street_atm.next())或print(next(corner_street_atm))

它对于控制对资源的访问等各种事情都很有用。

Itertools,你最好的朋友
itertools模块包含用于操作iterables的特殊函数。 曾经想复制一个发电机吗? 链两个发电机? 在一个单行嵌套列表中分组值? Map / Zip不创建另一个列表?

那么就import itertools。

一个例子? 让我们来看看四匹马比赛的可能到达顺序:

>>> horses = [1, 2, 3, 4]
>>> races = itertools.permutations(horses)
>>> print(races)
<itertools.permutations object at 0xb754f1dc>
>>> print(list(itertools.permutations(horses)))
[(1, 2, 3, 4),
(1, 2, 4, 3),
(1, 3, 2, 4),
(1, 3, 4, 2),
(1, 4, 2, 3),
(1, 4, 3, 2),
(2, 1, 3, 4),
(2, 1, 4, 3),
(2, 3, 1, 4),
(2, 3, 4, 1),
(2, 4, 1, 3),
(2, 4, 3, 1),
(3, 1, 2, 4),
(3, 1, 4, 2),
(3, 2, 1, 4),
(3, 2, 4, 1),
(3, 4, 1, 2),
(3, 4, 2, 1),
(4, 1, 2, 3),
(4, 1, 3, 2),
(4, 2, 1, 3),
(4, 2, 3, 1),
(4, 3, 1, 2),
(4, 3, 2, 1)]
理解迭代的内在机制
迭代是一个隐含iterables(实现iter()方法)和iterators(实现next()方法)的过程。 Iterables是您可以从中获取迭代器的任何对象。 迭代器是允许您迭代可迭代对象的对象。

在这篇文章中有更多关于for循环如何工作的内容。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容