★★pandas的数据输出显示设置

pandas数据分析时经常需要打印输出数据,当数据量大时,输出的展示设置非常重要,好的展示可以帮助更好地理解数据!

pandas相关的显示设置函数主要有以下三个:

import pandas as pd
(1)pd.pandas.set_option('参数名', 参数值) :设置相关显示选项
(2)pd.pandas.get_option('参数名', 参数值) :获取相关显示选项
(3)pd.pandas.reset_option('参数名', 参数值) :恢复默认相关选项

参数名:

(完整参数名为:'display.参数名',可省略'display.',直接用'参数名')

  • display.width:数据显示区域的总宽度,以总字符数计算。
  • display.max_rows:最大显示行数,超过该值用省略号代替,为None时显示所有行。
  • display.max_columns:最大显示列数,超过该值用省略号代替,为None时显示所有列。
  • display.max_colwidth:单列数据宽度,以字符个数计算,超过时用省略号表示。
  • display.precision:设置输出数据小数点的位数。
  • display.expand_frame_repr:输出数据宽度超过设置宽度时,是否要折叠,False不折叠(通常选这个),True要折叠。
  • display.large_repr:当数据维度超过max_rows和max_columns时,设置数据的显示方式,参数值truncate显示带省略号的数据(默认方式);参数值info显示数据的统计信息,而不直接显示数据(info实际就是df.info()函数)。
  • display.max_info_columns:df.info()函数按列统计每列的非空数据个数,当数据很大时,计算过程非常慢,该参数设置最大列数,当数据表的列数小于该值时,才计算每列的非空值并输出,当超过该值时不进行计算。
  • display.show_dimensions:当大的数据以truncate(带引号的省略方式)显示时,是否在最后显示数据的维数,True是显示(默认),False是不显示。

以上参数设置较常用,还有其他参数设置。
参考文献:
https://pandas.pydata.org/pandas-docs/stable/user_guide/options.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.set_option.html?highlight=pandas%20set_options

示例

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.randn(150, 150))
# pd.set_option('expand_frame_repr', False) #数据超过总宽度后,是否折叠显示
pd.set_option('display.width', 100) #数据显示总宽度
pd.set_option('max_rows', 100) #显示最多行数,超出该数以省略号表示
pd.set_option('max_columns', 100) #显示最多列数,超出该数以省略号表示
pd.set_option('max_colwidth', 16) #设置单列的宽度,用字符个数表示,单个数据长度超出该数时以省略号表示
pd.set_option('large_repr', 'truncate') #数据超过设置显示最大行列数时,带省略号显示/若是info则是统计信息显示
pd.set_option('show_dimensions', True) #当数据带省略号显示时,是否在最后显示数据的维度
print(df)

pd.set_option('max_info_columns', 100) #当列数超过这个值时,调用df.info()函数时不会统计每列的非空值。
print(df.info())
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,033评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,725评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,473评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,846评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,848评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,691评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,053评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,700评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,856评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,676评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,787评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,430评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,034评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,990评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,218评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,174评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,526评论 2 343

推荐阅读更多精彩内容