2018-10-09

  • Curl of a vector field

\vec{\nabla} \times \vec{E} = \left | \begin{array}{cccc} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial }{\partial z} \\ {E_x} & {E_y} & {E_z} \end{array} \right |

  • \sum (\vec{\nabla}\times\vec{A})\cdot{\rm d \vec{S}}

  • evaluate the curl of a vector field at a point and dot it with some unit vector, the result is the line integral per unit area of the vector field around an infinitesimal closed loop that is perpendicular to the unit vector

  • Electric monopoles
    V= \frac{q}{4\pi\epsilon_0r}
    \vec{E} = \frac{q}{4\pi\epsilon_0r^2}\hat{r}
    with radial field lines and spherical equipotential surfaces

  • Electric dipoles
    V(r,\theta) = \frac{\vec{p}\cdot\hat{r}}{4\pi\epsilon_0r^2}
    \vec{E}(\vec{r}) = -\vec{\nabla}V = -[\hat{r}\frac{\partial V}{\partial r} + \hat{\theta}\frac{1}{r}\frac{\partial V}{\partial \theta}]

which evaluates to

\vec{E}(r, \theta) = \frac{p}{4\pi\epsilon_0r^3}(\hat{r}2\cos\theta + \hat{theta}\sin \theta)

if p = p_0\sin\omega t then the \vec{E} field oscillates and generate electric magnetic waves

  • torque on a diploe in a uniform field
    \vec{G} = \vec{p}\times\vec{E}

  • energy of a dipole in uniform field
    U = -\vec{p}\cdot\vec{E}

  • force on a dipole on a general electric field: taylor expand around the E_- for E_+

\vec{F} = (\vec{p}\cdot\vec{\nabla})\vec{E}

  • using \vec{\nabla}\times\vec{E} = 0 and that \vec{p} is time independent
    \vec{F} = \vec{\nabla}(\vec{p}\cdot\vec{E})
    which interestingly is
    \vec{F} = - \vec{\nabla}(U)
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 7,448评论 0 10
  • 都说女人是天生的演员可是谁又知道她们那精湛的演技不过是为了你绅士挽着她的手离开时不流泪的体面既然他不懂你又何必为他…
    步优寒阅读 176评论 0 0
  • 我看到了一个农民伯伯在播种,这是我一直最近一直在做的事情,在不停的投资自己,为自己播种。 第二张牌我是看到一个别墅...
    颜荧梅生育哺育顾问157158阅读 123评论 0 0