MapReduce小结

先上图(纯手工,嘻嘻)


对于Map 端:

当Map 开始产生输出时,它并不是简单的把数据写到磁盘,因为频繁的磁盘操作会导致性能严重下降。它的处理过程更复杂,数据首先是写到内存中的一个缓冲区,并做了一些预排序,以提升效率。

每个Map 任务都有一个用来写入输出数据的循环内存缓冲区。这个缓冲区默认大小是100MB,可以通过io.sort.mb 属性来设置具体大小。当缓冲区中的数据量达到一个特定阀值(io.sort.mb * io.sort.spill.percent,其中io.sort.spill.percent 默认是0.80)时,也就是80M时,系统将会启动一个后台线程把缓冲区中的内容spill 到磁盘。

在spill 过程中,Map 的输出将会继续写入到缓冲区,但如果缓冲区已满,Map 就会被阻塞直到spill 完成。spill 线程在把缓冲区的数据写到磁盘前,会对它进行一个二次快速排序,首先根据数据所属的partition 排序,然后每个partition 中再按Key 排序。

Combiner 就是一个Mini Reducer,它在执行Map 任务的节点本身运行,先对Map 的输出做一次简单Reduce,使得Map 的输出更紧凑,更少的数据会被写入磁盘和传送到Reducer。

每当内存中的数据达到spill 阀值的时候,都会产生一个新的spill 文件(spill 文件保存在由mapred.local.dir指定的目录中,Map 任务结束后删除。),所以在Map任务写完它的最后一个输出记录时,可能会有多个spill 文件。在Map 任务完成前,所有的spill 文件将会被归并排序为一个索引文件和数据文件。这是一个多路归并过程,最大归并路数由io.sort.factor 控制(默认是10)。如果设定了Combiner,并且spill文件的数量至少是3(由min.num.spills.for.combine 属性控制),那么Combiner 将在输出文件被写入磁盘前运行以压缩数据。

对写入到磁盘的数据进行压缩(这种压缩同Combiner 的压缩不一样)通常是一个很好的方法,因为这样做使得数据写入磁盘的速度更快,节省磁盘空间,并减少需要传送到Reducer 的数据量。默认输出是不被压缩的, 但可以很简单的设置mapred.compress.map.output 为true 启用该功能。

当spill 文件归并完毕后,Map 将删除所有的临时spill 文件。

对于Reduce端:

1、复制Map输出;

2、排序合并;

3、Reduce处理;

1、Reduce会定期获取map的输出位置,进而复制输出到本地(map很小会放入内存,否则放入磁盘);

2、当所有的Map 输出都被拷贝后,Reduce 任务进入排序阶段(更恰当的说应该是归并阶段,因为排序在Map 端就已经完成),这个阶段会对所有的Map 输出进行归并排序,这个工作会重复多次才能完成;

3、在Reduce 阶段,Reduce 函数会作用在排序输出的每一个key 上。这个阶段的输出被直接写到输出文件系统,一般是HDFS。在HDFS 中,因为TaskTracker 节点也运行着一个DataNode 进程,所以第一个块备份会直接写到本地磁盘。

Sort:

如果对hadoop的shuffle机制有所了解的人都知道,map所产生的中间数据在送给reduce进行处理之前是要经过排序的。具体的过程实际上是快速排序,堆排序和归并排序的完美结合。

首先,当map函数处理完输入数据之后,会将中间数据存在本机的一个或者几个文件当中,并且针对这些文件内部的记录进行一次快速排序,这里的排序是升序排序。在Map任务将所有的中间数据写入本地文件并进行快速排序之后,系统会对这些排好序的文件做一次归并排序,(merge)并将排好序的结果输出到一个大的文件当中。这段代码是在MapTask的内部类MapOutputBuffer中实现的,其中归并排序是调用了Merge类的merge方法,具体过程下面将会详细叙述。

当map阶段完成后,启动reduce过程之前,会把这些由map输出的中间文件copy到本地(拉取过程),然后生成一个或者几个Segment类的实例(溢出文件)。Segment类封装了这些中间数据,并且提供了一些针对这些中间数据的操作,比如读取记录等。在reduce端,这些中间数据可以存在内存中,也可以存在硬盘中。同时,系统还会启动两个merge(归并)线程,一个是针对内存中的segment进行归并,一个是针对硬盘中的segment进行归并。

Merge类的merge方法生成了一个MergeQueue类的实例,并且调用了该类的merge方法。MergeQueue类是PriorityQueue类的一个子类,同时实现了RawKeyValueIterator接口。PriorityQueue类实际上是一个小根堆,而MergeQueue的merge方法实际上就是将segment对象存储进父类的数据结构中,并且建立一个小根堆的过程。因此,hadoop的归并和排序不是两个分开的过程,而是一个过程。在将segment归并的同时进行了排序。

需要注意的是,这里针对segment排序的过程是以segment为单位的,而不是以segment中存储的记录(record)为单位的。而这里排序过程中对两个segment对象的比较是对segment中存储的第一个记录的键的比较。也就是说假设有两个segment,一个叫a,一个叫b,a<b仅仅是因为a的第一个记录的键小于b的第一个记录的键。具体的比较方法由用户定义的comparator类定义的。具体的比较过程在MergeQueue类中的lessThan方法中定义。现在,我们已经得到了一个以segment为单位,以segment中第一个记录的键为比较依据的小根堆,至此在系统中所谓的sort阶段就已经结束了。

但是实际上可以看出中间数据的排序是贯穿于整个shuffle阶段的。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,128评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,316评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,737评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,283评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,384评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,458评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,467评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,251评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,688评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,980评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,155评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,818评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,492评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,142评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,382评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,020评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,044评论 2 352

推荐阅读更多精彩内容