Redis、Memcache和MongoDB的区别

最近在研究NoSQL方面的知识,在网上搜索了Redis、Memcache和MongoDB的优缺点,发现一篇文章总结的挺详细的,遂转载过来。

请移步转载地址,如有问题,劳烦通知删除!


一、redis

优点:
 1、支持多种数据结构,如 string(字符串)、 list(双向链表)、dict(hash表)、set(集合)、zset(排序set)、hyperloglog(基数估算)
 2、支持持久化操作,可以进行aofrdb数据持久化到磁盘,从而进行数据备份或数据恢复等操作,较好的防止数据丢失的手段。
 3、支持通过Replication进行数据复制,通过master-slave机制,可以实时进行数据的同步复制,支持多级复制和增量复制,master-slave机制是Redis进行HA的重要手段。
 4、单线程请求,所有命令串行执行,并发情况下不需要考虑数据一致性问题。
 5、支持pub/sub消息订阅机制,可以用来进行消息订阅与通知。
 6、支持简单的事务需求,但业界使用场景很少,并不成熟。

局限性:
 1、Redis只能使用单线程,性能受限于CPU性能,故单实例CPU最高才可能达到5-6wQPS每秒(取决于数据结构,数据大小以及服务器硬件性能,日常环境中QPS高峰大约在1-2w左右)。
 2、支持简单的事务需求,但业界使用场景很少,并不成熟,既是优点也是缺点。
 3、Redisstring类型上会消耗较多内存,可以使用dicthash表)压缩存储以降低内存耗用。
 4、MemcacheRedis都是Key-Value类型,不适合在不同数据集之间建立关系,也不适合进行查询搜索。比如rediskeys pattern这种匹配操作,对redis的性能是灾难。


二、Memcached

优点:
 1、Memcached可以利用多核优势,单实例吞吐量极高,可以达到几十万QPS(取决于key、value的字节大小以及服务器硬件性能,日常环境中QPS高峰大约在4-6w左右)。适用于最大程度扛量。
 2、支持直接配置为session handle

局限性:
 1、只支持简单的key/value数据结构,不像Redis可以支持丰富的数据类型。
 2、无法进行持久化,数据不能备份,只能用于缓存使用,且重启后数据全部丢失。
 3、无法进行数据同步,不能将MemCached中的数据迁移到其他MemCached实例中。
 4、Memcached内存分配采用Slab Allocation机制管理内存,value大小分布差异较大时会造成内存利用率降低,并引发低利用率时依然出现踢出等问题。需要用户注重value设计。

缓存过期策略
 1、Memcached不会释放已分配的内存,其存储空间可以重复使用
 2、Memcached内部不会监视数据是否过期,而是在get时查看数据的时间戳,查看数据是否过期。被称为lazy expiration(惰性过期)
 3、Memcached内存空间不足,即无法从slab class中获取到新的空间时,就从最近未被使用的数据中搜索,将其空间分配给新的数据。(如果要禁用LRU,使用-M参数,超出会报错)


三、mongoDB

mongoDB 是一种文档性的数据库。先解释一下文档的数据库,即可以存放xml、json、bson类型系那个的数据。
这些数据具备自述性(self-describing),呈现分层的树状数据结构。redis可以用hash存放简单关系型数据。
mongoDB 存放json格式数据。
适合场景:事件记录、内容管理或者博客平台,比如评论系统。

1、mongodb持久化原理

mongodb与mysql不同,mysql的每一次更新操作都会直接写入硬盘,但是mongo不会,做为内存型数据库,数据操作会先写入内存,然后再会持久化到硬盘中去。

  那么mongo是如何持久化的呢
  mongodb在启动时,专门初始化一个线程不断循环(除非应用crash掉),用于在一定时间周期内来从defer队列中获取要持久化的数据并写入到磁盘的journal(日志)和mongofile(数据)处,当然因为它不是在用户添加记录时就写到磁盘上,所以按mongodb开发者说,它不会造成性能上的损耗,因为看过代码发现,当进行CUD操作时,记录(Record类型)都被放入到defer队列中以供延时批量(groupcommit)提交写入,但相信其中时间周期参数是个要认真考量的参数,系统为90毫秒,如果该值更低的话,可能会造成频繁磁盘操作,过高又会造成系统宕机时数据丢失过。

2.什么是NoSQL数据库?NoSQL和RDBMS有什么区别?在哪些情况下使用和不使用NoSQL数据库?

NoSQL是非关系型数据库,NoSQL = Not Only SQL。
 关系型数据库采用的结构化的数据,NoSQL采用的是键值对的方式存储数据。
 在处理非结构化/半结构化的大数据时;在水平方向上进行扩展时;随时应对动态增加的数据项时可以优先考虑使用NoSQL数据库。
 在考虑数据库的成熟度;支持;分析和商业智能;管理及专业性等问题时,应优先考虑关系型数据库。

3.MySQL和MongoDB之间最基本的区别是什么?
 关系型数据库与非关系型数据库的区别,即数据存储结构的不同。

4.MongoDB的特点是什么?
 (1)面向文档
 (2)高性能
 (3)高可用
 (4)易扩展
 (5)丰富的查询语言

5.MongoDB支持存储过程吗?如果支持的话,怎么用?
MongoDB支持存储过程,它是javascript写的,保存在db.system.js表中。

6.如何理解MongoDB中的GridFS机制,MongoDB为何使用GridFS来存储文件?
GridFS是一种将大型文件存储在MongoDB中的文件规范。使用GridFS可以将大文件分隔成多个小文档存放,这样我们能够有效的保存大文档,而且解决了BSON对象有限制的问题。

7.为什么MongoDB的数据文件很大?
MongoDB采用的预分配空间的方式来防止文件碎片。

8.当更新一个正在被迁移的块(Chunk)上的文档时会发生什么?
 更新操作会立即发生在旧的块(Chunk)上,然后更改才会在所有权转移前复制到新的分片上。

9.MongoDB在A:{B,C}上建立索引,查询A:{B,C}和A:{C,B}都会使用索引吗?
 不会,只会在A:{B,C}上使用索引。

10.如果一个分片(Shard)停止或很慢的时候,发起一个查询会怎样?
 如果一个分片停止了,除非查询设置了“Partial”选项,否则查询会返回一个错误。如果一个分片响应很慢,MongoDB会等待它的响应。


四、Redis、Memcache和MongoDB的区别

从以下几个维度,对redis、memcache、mongoDB 做了对比,

1、性能
  都比较高,性能对我们来说应该都不是瓶颈
  总体来讲,TPS方面redismemcache差不多,要大于mongodb

2、操作的便利性
  memcache数据结构单一
  redis丰富一些,数据操作方面,redis更好一些,较少的网络IO次数
  mongodb支持丰富的数据表达,索引,最类似关系型数据库,支持的查询语言非常丰富

3、内存空间的大小和数据量的大小
  redis在2.0版本后增加了自己的VM特性,突破物理内存的限制;可以对key value设置过期时间(类似memcache
  memcache可以修改最大可用内存,采用LRU算法
  mongoDB适合大数据量的存储,依赖操作系统VM做内存管理,吃内存也比较厉害,服务不要和别的服务在一起

4、可用性(单点问题)
对于单点问题,
  redis,依赖客户端来实现分布式读写;主从复制时,每次从节点重新连接主节点都要依赖整个快照,无增量复制,因性能和效率问题,
所以单点问题比较复杂;不支持自动sharding,需要依赖程序设定一致hash 机制。
  一种替代方案是,不用redis本身的复制机制,采用自己做主动复制(多份存储),或者改成增量复制的方式(需要自己实现),一致性问题和性能的权衡
  Memcache本身没有数据冗余机制,也没必要;对于故障预防,采用依赖成熟的hash或者环状的算法,解决单点故障引起的抖动问题。
  mongoDB支持master-slave,replicaset(内部采用paxos选举算法,自动故障恢复),auto sharding机制,对客户端屏蔽了故障转移和切分机制。

5、可靠性(持久化)
对于数据持久化和数据恢复,
  redis支持(快照、AOF):依赖快照进行持久化,aof增强了可靠性的同时,对性能有所影响
  memcache不支持,通常用在做缓存,提升性能;
  MongoDB从1.8版本开始采用binlog方式支持持久化的可靠性

6、数据一致性(事务支持)
  Memcache 在并发场景下,用cas保证一致性
  redis事务支持比较弱,只能保证事务中的每个操作连续执行
  mongoDB不支持事务

7、数据分析
  mongoDB内置了数据分析的功能(mapreduce),其他不支持

8、应用场景
  redis:数据量较小的更性能操作和运算上
  memcache:用于在动态系统中减少数据库负载,提升性能;做缓存,提高性能(适合读多写少,对于数据量比较大,可以采用sharding
  MongoDB:主要解决海量数据的访问效率问题

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,417评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,921评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,850评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,945评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,069评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,188评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,239评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,994评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,409评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,735评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,898评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,578评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,205评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,916评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,156评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,722评论 2 363
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,781评论 2 351

推荐阅读更多精彩内容